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Machine learning rings in a new paradigm
IN data compression

Learned compression 1s data driven, has quick turnaround and i1s easily
adaptable.

It presents opportunities to quickly develop algorithms for new data modalities,
as well as sophisticated error metrics.
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Outline

1. Learned image compression
2. Distortion
3. Realism

4. Perceptual spaces
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Part |
Learned Image Compression
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Why the DCT?

IEEE TRANSACTIONS ON COMPUTERS, JANUARY 1974

Discrete Cosine Transform
N. AHMED, T. NATARAJAN, anp K. R. RAO

Abstract—A discrete cosine transform (DCT) is defined and an algo-
rithm to compute it using the fast Fourier transform is developed. It is
shown that the discrete cosine transform can be used in the area of
digital processing for the purposes of pattern recognition and Wiener
filtering. Its performance is compared with that of a class of orthogonal
transforms and is found to compare closely to that of the Karhunen-
Loeve transform, which is known to be optimal. The performances of
the Karhunen-Loéve and discrete cosine transforms are also found to
compare closely with respect to the rate-distortion criterion.

Assumptions:
» Gaussian (AR-1) signal

e LInear transform

= KLT optimal, DCT very close and fast
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Fig. 5. Rate versus distortion for M = 16 and p = 0.9.
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Artificial neural networks (ANNs) are universal function approximators.

We can train them to approximate the RD-optimal transforms.
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Nonlinear transform coding
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Nonlinear transform coding
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Nonlinear transform coding
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End-to-end optimization
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End-to-end optimization

|_oss function
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End-to-end optimization

|_oss function
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End-to-end optimization

|_oss function

L(0, ¢, %) = Ex|— 109, py(Q(ga(x; @))|9)| +XEx[lIx — 9s(Q(ga(x; $)); 0)]/5]
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Stochastic gradient descent
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End-to-end optimization

|_oss function

L(0, ¢, %) = Ex|— 109, py(Q(ga(x; @))|9)| +XEx[lIx — 9s(Q(ga(x; $)); 0)]/5]

R D

Stochastic gradient descent

@ 1 OL(x;0)
ag Bx[L(x:0)] ~ \5\2 50 L

Symbolic differentiation (JAX, PyTorch, TensorFlow, etc.) Q
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Proxy R-D loss

. . . Compression
Both rate and distortion loss contain

discrete computations. ~
y 44 : >—> Yy

We need to replace them with
differentiable losses, for example by
plugging In dithered quantization.

training
Better, we may interpolate between v 7
uniform and dithered quantization to %
control bias vs. variance of gradients
. Ay ~U _| L
(Agustsson & Theis, NeurlPS, 2020).
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Toy source

linear transform coding
R+AD = 6.87

source dimension 2

—4 —2 0 2 4
source dimension 1
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Toy source

nonlinear transform coding
R+AD = 5.97

source dimension 2

-
Qth

—4 —2 0 2 4
source dimension 1
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Toy source

source dimension 2

rate-constrained vector

quantization
R+AD = 5.95

—4 —2 0 2 4
source dimension 1
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Progress in learned compression of natural images
over the last few years

One model for many RD-points
Competitive in terms of PSNR
?  Computational complexity

?  Subjective image quality
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Hyperprior models

Many improvements stem from better
entropy coding via a “hyperprior".

Elements across channel dimension of
the latent tensor y aren’'t considered

iIndependent.

Their distribution 1s predicted either
forward- or backward-adaptively, by a
set of other neural networks (h).

Ballé et al. (IEEE STSP, 2021)
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“Catching up”

42

40

38

w
(@)

PSNR (RGB)
W
S

32

30"

28 -

1N

terms of PSNR

Guo 2021 (TCSVT, causal prediction)

VVC (VTM 13.0)

Minnen 2020 (ICIP, channel-conditional)
Minnen 2018 (NeurlPS, spatial context)

AVIF (speed=4)

Ballé 2018 (ICLR, hyperprior)

Ballé 2017 (ICLR, factorized prior)

JPEG2000 (Open)PEG)
WebP
JPEG (4:2:0)

-
-
--
-

-
-
.
-

0.2

0.4

0.6

0.8 1.0
Bits per pixel (BPP)

1.2

1.4

1.6

1.8

Google Research



“Catching up”

42

40

38"

w
(@)

PSNR (RGB)
W
NN

32

30"

28 -

1N

terms of PSNR

Guo 2021 (TCSVT, causal prediction)

VVC (VTM 13.0)

Minnen 2020 (ICIP, channel-conditional)
Minnen 2018 (NeurlPS, spatial context)

AVIF (speed=4)

Ballé 2018 (ICLR, hyperprior)

Ballé 2017 (ICLR, factorized prior)

JPEG2000 (Open|PEG)
WebP
JPEG (4:2:0)

-
——
-
-
-

-
-
-
-

0.2

0.4

0.6

0.8 1.0
Bits per pixel (BPP)

1.2

1.4

1.6

1.8

Google Research



“Catching up”

42

1N

terms of PSNR

—— Guo 2021 (TCSVT, causal prediction)
————— VVC (VTM 13.0)
—— Minnen 2020 (ICIP, channel-conditional)
40 —— Minnen 2018 (NeurlPS, spatial context)
----- AVIF (speed=4)
—— Ballé 2018 (ICLR, hyperprior)
Ballé 2017 (ICLR, factorized prior)
381 ----- JPEG2000 (Open|PEG)
' WebP
----- JPEG (4:2:0)

w
(@)

PSNR (RGB)
S

-
-
-
-
-

-
-
-

——
-

-
-

-

-
-
-
-
-
-
-

-
-

32
y 4
2017 (Ballé et al.)
28 - J P E G
9.0 e 0.2 : 0.4 0.6 0.8 1.0 1.2 1.4 1.6

Bits per pixel (BPP)

1.8

Google Research



éé

Catching up”

42

1N

terms of PSNR

—— Guo 2021 (TCSVT, causal prediction)
----- VVC (VTM 13.0)
—— Minnen 2020 (ICIP, channel-conditional)
40 —— Minnen 2018 (NeurlPS, spatial context)
----- AVIF (speed=4)
—— Ballé 2018 (ICLR, hyperprior)
Ballé 2017 (ICLR, factorized prior)
381 ----- JPEG2000 (Open|PEG)
' WebP
----- JPEG (4:2:0)

w
(@)

PSNR (RGB)
S

-
-
-
-
-

-
-
-

-y
-
-

——
-

-
-
-

-

-
-
o
-
-
-
-

-
-

32 ’ ’
~2018 (Ballé et al.)
y 4
2017 (Ballé et al.)
28 J P E G
9.0 N 0.2 : 0.4 0.6 0.8 1.0 1.2 1.4 1.6

Bits per pixel (BPP)

1.8

Google Research



“Catching up” in terms of PSNR
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‘Catching up” in terms of PSNR
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Progress in learned compression of natural images
over the last few years

One model for many RD-points
Competitive in terms of PSNR

?  Computational complexity

?  Subjective image quality
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Rate—distortion—complexity trade-off

34.0-
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® Factorized Prior

® Hyperprior

More detail:

David Minnen's
|CIP 2021 keynote
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Progress in learned compression of natural images
over the last few years

One model for many RD-points
Competitive in terms of PSNR
?  Computational complexity

? Subjective image quality
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optimized for MSE
0.129 bpp

Ballé et al. (ICLR, 2018) Google Research 24
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0.129 bpp
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optimized for MSE
0.194 bpp

optimized for MS-SSIM -
0.187 bpp F-k..

:
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optimized for MSE

0.194 bpp
optimized for MS-SSIM . ,;\ ~
0.187 bpp L T/

Ballé et al. (ICLR, 2018) Google Research 2



Observation:

 Rate allocation decisions are “amortized” into the networks:
They learn to distribute bits where they are most needed.

o Explicit control of bitrate allocation during compression 1s not necessary.

e Distortion metric does not need to be evaluated “in the loop”.

We can use a lot more sophisticated perceptual models than before!

Google Research 2



What are perceptual models?

Emulate humans on tasks like these:
» Does the image look realistic?

Do the two images look identical?
 How realistic does the image look?

« How bad Is the image degraded compared to the original?

Google Research 2
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What are perceptual models?

Emulate humans on tasks like these: “nO Y
« Does the image look realistic?

Do the two images look identical?

 How realistic does the image look?

« How bad Is the image degraded compared to the original?
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Part Il
Distortion
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What do we need from a distortion metric?

 Highly predictive of human ratings
o Differentiable and well-defined (e.g., d(x, x) = 0)

e Generalize well across types of iImages and types of distortions

Google Research s



ome distortion metrics have “blind spots”

n) GTI-CNN (q) LPIPS (r) DISTS

from arXiv, with author’s permission

Ding et al. (1JCV, 2021) Google Research s
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ome distortion metrics have “blind spots”

Experiment:

s 4 e . . Initialize x
- g N to noise

2. Minimize
d(x, X) over X

n) GTI-CNN (q) LPIPS (r) DISTS

from arXiv, with author’s permission

Ding et al. (1JCV, 2021) Google Research s



Optimizable metrics need to generalize better

What does 1t mean to “generalize™’
e For quality assessment, we evaluate the metric on a joint distribution:

p(x, X) = p(x) p(x|x)

natural image distribution
distribution of compression artifacts

e For training a compression model, we evaluate the metric on a potentially much
larger domain (and also need to take derivatives there).

Google Research 3



Even worse: |QA datasets have blind spots, too

TID, LIVE, CSIQ, etc.: calibrated, but typically no structural distortions

BAPPS: crowd-sourced patch ratings including structural distortions

Patch O Reference Patch 1

|

https://github.com/richzhang/PerceptualSimilarity, BSD license

Zhang et al. (CVPR, 2018) Google Research s



What do we need from a distortion metric?

 Highly predictive of human ratings
o Differentiable and well-defined (e.g., d(x, x) = 0)

 Generalize well across types of images and types of distortions —

 Neural networks can and will “cheat”, because they are less constrained In
what types of artifacts they can produce.

Google Research s



Part III
Realism
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No-reference metrics, reinterpreted

ldealized “critic’ T uses likelihood ratio between natural image distribution and
distribution of reconstructions:

T(x) = f (px(X)>

pz(X)

In contrast to distortion, the critic “learns’ a model of the distribution of
artifacts.

Many no-reference metrics are in fact specialized to detect a particular source
of artifacts — same generalization problem here.

Nowozin et al. (NeurlPS, 2016) Google Research 4



No-reference metrics, reinterpreted

ldealized “critic’ T uses likelihood ratio between natural image distribution and
distribution of reconstructions:

T(x)="f (

)

GANs generate realistic images by playing an “adversarial’’ optimization

game between a critic and a generator.

The generator learns to produce images that fool the critic, while the critic learns
to classify images into “real or fake".

Nowozin et al. (NeurlPS, 2016) Google Research 4



No-reference metrics, reinterpreted

Taking the expectation, we can define realism as an f-divergence between the

)

two distributions:

Dr = Ecvp, f

For example, for f(r) = rlog r, we recover the Kullback—Leibler divergence.

Adding an “adversarial loss’ to the training of a compression model is one
way to achieve better realism.

Nowozin et al. (NeurlPS, 2016)
Blau & Michaeli (CVPR, 2019) Google Research 43



Distortion and realism are at odds with each other

Blau & Michaeli (CVPR, 2019)
*authors use the term “perception” for realism Go gle Research a4



Distortion and realism are at odds with each other

original

Ubaid kareem, CC BY-SA, Wik. Cmns.

Blau & Michaeli (CVPR, 2019)
*authors use the term “perception’” for realism Google Research .4


https://commons.wikimedia.org/wiki/File:Beauty_of_grass.jpg

Distortion and realism are at odds with each other

reconstruction optimized for:

original rate + distortion

Ubaid kareem, CC BY-SA, Wik. Cmns.

distortion: great
realism: bad

Blau & Michaeli (CVPR, 2019)
*authors use the term “perception’” for realism Google Research .4


https://commons.wikimedia.org/wiki/File:Beauty_of_grass.jpg

Distortion and realism are at odds with each other

reconstruction optimized for:

original rate + distortion rate + realism

Ubaid kareem, CC BY-SA, Wik. Cmns. clairity, CC BY, flickr.com

distortion: great distortion: bad

realism: bad realism: great

Blau & Michaeli (CVPR, 2019)
*authors use the term “perception” for realism

Google Research .4


https://www.flickr.com/photos/clairity/1328402515
https://commons.wikimedia.org/wiki/File:Beauty_of_grass.jpg

Distortion and realism are at odds with each other

reconstruction optimized for:

original rate + distortion rate + realism

Ubaid kareem, CC BY-SA, Wik. Cmns. clairity, CC BY, flickr.com

distortion: great distortion: bad

realism: bad realism: great

Blau & Michaeli (CVPR, 2019)
*authors use the term “perception” for realism

rate + dist. + real.

distortion: good

realism: good
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https://www.flickr.com/photos/clairity/1328402515
https://commons.wikimedia.org/wiki/File:Beauty_of_grass.jpg

Improving realism with adversarial losses

adversarial loss,
in addition to
distortion loss

+ X E[d(x, X)

distortion

+ K Df
realism

Google Research s



HiFIC model

Larger synthesis
transform network

Uses a distortion loss
of MSE + LPIPS and
a conditional patch-
level critic

Kodak/kodim02.png

Mentzer et al. (NeurlPS, 2020)

Interactive demo @ hific.github.io

Go

JPG (7 kB, =1x ours kB)
JPG (14 kB, ~2x)
JPG (22 kB, ~3x)

JPG (28 kB, ~4x)

BPG (8 kB, ~1x)

gle Research
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HiFIC @ 7kB BPG @ 8 kB (~1x)

Original BPG @ 17 kB (~2x)

Mentzer et al. (NeurlPS, 2020) Google Research 4
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Original BPG @8kB

‘ .
- -

HiFiC @7kB BPG @15kB

. -

Mentzer et al. (NeurlPS, 2020) Go gle Research 45



- 1.0 Human (inverted ELO) B D Bl KID Bl NIQE LPIPS

i il Wi itk Ill

HiFiC™ Ours HiFiC™ Ours BPG HiFiC*® Ours BPG no GAN M&S
o) _ _ I
0.359 bpp 0.237 bpp 0.504 bpp 0.40S5 bpp 0.120 bpp 0.390 bpp 0.272 bpp 0.118 bpp 0.133 bpp
MSE+LPIPS+GAN MSE+LPIPS+GAN MSE MSE+LPIPS+GAN MSE MSE+LPIPS MSE

1l Lower is better for all metrics
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- 1.0 Human (inverted ELO) B D Bl KID B NIQE LPIPS

- 0.5 II

HiFiC™ Ours HiFiC™ Ours BPG HiFiC*® Ours BPG M&S no GAN M&S
o _

0.359 bpp 0.237 bpp 0.504 bpp 0.40S5 bpp 0.120 bpp 0.390 bpp 0.272 bpp 0.118 bpp 0.133 bpp

MSE+LPIPS+GAN MSE+LPIPS+GAN MSE MSE+LPIPS+GAN MSE MSE+LPIPS MSE

N

HiFiC at 0.237 bpp prefered to:

- BPG at 2.1x the bitrate

- Mean & Scale hyperprior
(trained for MSE at 1.7x the bitrate)
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- 1.0 Human (inverted ELO) B D B KID B NIQE

D I I m IIII III — III III o

HiFiC™ Ours HiFiC™ Ours BPG HiFiC*® Ours BPG no GAN M&S
o
0.359 bpp 0.237 bpp 0.504 bpp 0.40S5 bpp 0.120 bpp 0.390 bpp 0.272 bpp 0.118 bpp 0.133 bpp
MSE+LPIPS+GAN MSE+LPIPS+GAN MSE MSE+LPIPS+GAN \MSE/ MSE+LPIPS MSE
4

Adding GAN loss boosts
subjective quality

Google Research s




HiFiC Failure Cases: small faces
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Optimizing for realism helps, but isn't enough

(Other ANN-based techniques have been developed to reproduce the natural
image distribution better, such as diffusion processes.)

Many such models are applied to “patch of pixels” representation,
hence aim to produce matching pixel-level distributions.

However, matching pixel distributions may not be ideal, since pixel
representations don't take into account human perception

(e.g. sensitivity to faces, text).

Google Research s



Part IV
Perceptual Spaces
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The brain extracts and filters
InNformation from the environment

This happens on many levels:

e via physiological constraints (e.g. by the
type and distribution of photoreceptors In
the eye)

by pre-attentive processing (e.g. spatial/
temporal masking effects)

 Or even cognitively (e.g. attention)

Hankem, Public Domain, via Wikimedia Commons
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https://commons.wikimedia.org/wiki/File:Human_Brain_sketch_with_eyes_and_cerebrellum.svg
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Low-level example
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re of wavelengths of light
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photoreceptors.

Many different spectral power

distributions

all appear as the same

color (metamer).

—asy to forget about, since 1t 1s

already “baked in” to illumination,

display, and camera tech!
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OpenStax College, CC BY 3.0, via Wikimedia Commons
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High-level example

Cognitive processes, such as solving a
given task, can affect perception.

For example, recognizing the
differences in the cartoon on the right
depends on where we direct our

attention.

Dmitry Abramoy, via Pixabay
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Many IQA models use proxy representations

We can think of each stimulus (signal)
as a point In space.

A transformation brings each point
into a perceptual space.

In this space, distances between points
predict human judgments of similarity.

Sets of points representing the just
noticeable difference (JND) ideally are
spherical.

X3 V4|
. X1 4-_’ .
X Z ®
2 3 7
stimulus perceptual
space space
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as a point In space.
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Many IQA models use proxy representations

We can think of each stimulus (signal)
as a point In space.

A transformation brings each point
into a perceptual space.

In this space, distances between points
predict human judgments of similarity.

Sets of points representing the just
noticeable difference (JND) ideally are
spherical.

SRR T

stimulus
space

perceptual
space
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Perceptually optimized compression
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(Early!) example

MacAdam (1942): Ellipses correspond to just-
noticeable differences in chromaticity.

Color spaces such as CIE Lab, and many
more, are designed to “warp” the space such
that ellipses turn into equal-sized circles.

Then, (Euclidean) distances predict perceived
color similarity.

MacAdam (JOSA, 1942)
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Object recognition features
as perceptual spaces

Object recognition features have neural

correlates In the visual system.

Hankem, Public Domgin, via Wikimedia Comnjons

Use object recognition as a proxy task to
construct a perceptual space?

Yamins & DiCarlo (Nature Neuroscience, 2016) Go gle Research &


https://commons.wikimedia.org/wiki/File:Human_Brain_sketch_with_eyes_and_cerebrellum.svg

Example: LPIPS

Highly predictive of human annotations even
on structural distortions

However, feature representations require
significant amounts of human responses:

o First, for training proxy task

Hankem, Public Domgin, via Wikimedia Comnjons

(classification labels)

« Second, for training task adaptation layers
(IQA ratings)

Zhang et al. (CVPR, 2018) Google Research 3


https://commons.wikimedia.org/wiki/File:Human_Brain_sketch_with_eyes_and_cerebrellum.svg

Learned perceptual spaces

Can we build a representation from
first principles, without using human
responses’

Google Research ¢4



PIM: An Unsupervised Information-Theoretic
Perceptual Quality Metric

Learn an image representation, imposing principles/constraints borrowed from

computational neuroscience:

« Slowness: relevant visual features tend to be persistent in time
(Foldiak, 1991; Mitchison, 1991; Wiskott, 2003)

« Efficient coding: brain “compresses’ sensory information
(Attneave, 1954; Barlow, 1961)

o Approximate translation and scale equivariance:
well-known properties of representations in human visual system

Bhardwaj et al. (NeurlPS, 2020) Google Research «s



The slowness principle

FUJI RVP K RVP-501 FUJI RVP 4 RVP-501 FUJI RVP 9 RVP-501
. . £
, /
’ )

- ‘ v .

Slow features, persistent across S0 NEENNNENNNEENEEERNEENS

time, teﬂd to COiﬂCide Wlth Jesse Millan, CC BY 2.0, via Flickr
relevant features

Fast features tend to contain
“nuisance’ Information
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The slowness principle
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Slow features, persistent across S SSESEEEENENEENENEEEERE

time, teﬂd to COiﬂCide Wlth Jesse Millan, CC BY 2.0, via Flickr
relevant features

Fast features tend to contain

“nuisance’ Information

retinal image

time
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The slowness principle
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“nuisance’ Information
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time
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The slowness principle
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Slow features, persistent across SSESENNSENEENEEEEER00ENES

time, teﬂd to COiﬂCide Wlth Jesse Millan, CC BY 2.0, via Flickr
relevant features

Fast features tend to contain
“nuisance’ Information

object presence

time
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Slowness for
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larity

Image simi

Slowness for

Pixel values change, but scene composition, texture i1s constant
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An implementation of slowness

Y)

on /(X

ion Z (In some vector space) capture mutual informat

Let representat

in a video)

X and temporally close image Y (e.g., two frames

image

between
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Learning objective

A2X)azly) sy 7y

Ex, zlog—
g p(z)p(z|x, y)

Maximize multivariate mutual
information (MMI) between

X, Y, and Z using a stochastic
lower bound “IXYZ" (Fischer, 2019)

e Parameterized by two networks:
p(z|x, y): joint encoder
q(z|-): marginal encoder

e (Contrastive loss, due to
empirical/minibatch marginal p(z)

q(z|x)

p(z|x,y)

q(zly)

Google Research
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Architecture
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ontrastive losses, visually explained

Positive example

Google Research 7



Induced perceptual metric

Symmetrized Kullback—Leibler
divergence between representations
z of two 1mages, as predicted by
marginal encoder g (we can discard
joint encoder after training).

Directly use the divergence as a
distortion metric, or define realism
measure on Z.

q(z|x)

q(zly)

Zy

Google Research
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PIM competitive without using any human ratings

LPIPS Alex: pre-trained

Classiﬂer’ NnoO ﬂne tuning Metric BAPPS-2AFC (triplet) BAPPS-JND
MS-SSIM 63.26 52.50

LPIPS Alex-lin: fine-tuned for NLPD 63.50 50.80
. LPIPS Alex 68.98 59.47
triplet task LPIPS Alex-lin 69.53 61.50
PIM (Ours) 69.09 64.38

PIM is significantly better on

BAPPS-JND, and competitive Agreement with raters (0-100)
on BAPPS-2AFC.

Google Research 7



Conclusion

Better perceptual models are a new milestone for image compression.

Crucial for training: generalization across types of distortion.

Some of the important ingredients may be:

» [rading off distortion and realism

« Developing better perceptual spaces

[0 that end, increasingly modeling brain behavior rather than anatomy

Google Research 7
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