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JPEG Al Standard: Learning an Efficient and
Rich Visual Data Representation
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52 Outline

Context and Motivation
The JPEG Al Project

JPEG Al Verification Model
Performance Evaluation

Going Forward ...

Data
Compression
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»¢  Rich Ecosystem of Image Technologies
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»¢  Image Compression Landscape
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> Classical Image Compression Pipeline

JPEGC: simple, elegant, large ecosystem, interpretable, ...

Original

Linear ] .
Hand-crafted Quantization J Entropy Coding J Bitstream

Transform J

Quality Metric Quantization Levels Entropy Coding Model (\3'

Linear ( I
Hand-crafted nvgrsg
L Quantization

Inverse Transform
Data

Compressi :
conPe> Decoded

L Entropy Decoding Bitstream




»*  Deep Learning Explosion !

Giga FLoating-point Operations Per Second that you can buy with 1 USD

@ RTX 4090

44 -]

RTX 3080 .. .

@
8
o

Py
X
S)
oo
o

¢
-]

Single precision GFLOPS/USD

N )
o o

o

o

o

o
o

o

R

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

Data 4
Compression
Conference

Vendor
O AMD
O NVIDIA
O Intel
GPU Type
Desktop

|. Big Data

Larger Datasets
Easier
Collection &
Storage

IM&AGENET

e Al
Vi ol {
< [ 3%

‘WIKIPEDIA '

The Fee Encyclopedia

Artificial Intelligence

Machine Learning

Deep Learning

2. Hardware 3. Software

* Graphics * Improved
Processing Units Techniques
(GPUs) * New Models

* Massively * Toolboxes
Parallelizable

L

TensorFlow




52 Deep Learning Achievements: Computer Vision

Extremely successful in computer vision tasks:
Image classification, object detection, semantic segmentation, ...
Face recognition, image generation, video understanding, ...

Image classification

Easiest classes
red fox (100) hen-of-the-woods (100) ibex (100)  goldfinch (100) flat-coated retriever (100)

tiger (100) hamster (100) porcuplne(IOO) stingray 100) Blenheim spaniel (100)

Hardest Classes

muzzle (71) hatchet (68) water bottle (68) velvet (68) loupe (66)

LI

hook (66) spotlight (66) ladle (65

Data ‘
Compression
Conference



52 Deep Learning Achievements: Image Processing

Extremely successful in image processing tasks:
Denoising, super-resolution, inpainting, style transfer, segmentation, ...
Many other image restoration tasks (dehazing, deraining, etc.), ...

Mordvinsev et al, 2015
Gatys et al, 2016

Data 4
Compression
Conference



52 Visual Coding vs Neural Networks

Data
Compression
Conference

Learning-based image compression
Non-linear transformations, entropy coding models, etc.

Learning-based video compression
Optical flow, motion compensation, multi-frame fusion, etc.

Models for typical image/video compression modules
Intra-prediction, in/out loop-filtering, entire encoder, etc.

Learning-based point cloud compression
Geometry and attribute compression methods, etc.

Learning-based light-field compression
Stereoscopic and multi-view representations, NeRF, etc.

Neural networks models and activations compression
Enabling the efficient transmission of large models (or activations)

11



52 Image Compression with Neural Networks

Very reeent and promising field
N. Sonehara, M. Kawato, S. Miyake, K. Nakane, Image data compression using neural
network model, Proceedings of the International Joint Conference On Neural
Networks, Washington DC, 1989, pp. 35-41.

G.L. Sicurana, G. Ramponi, Artificial neural network for image compression, Electron.

Lett. 26, (7) (1990) 477-479.

Teaching signal

Qutput layer

. Compression Net Reconstruction net

Learning {CODER (DECODER -

images Hidden Layers Hidden layers T

(training r ] >

data) Q| [rransmission q,

. . Ve - Channel / '/‘—‘—‘k a Error
] i \Quantizer Processing unit \/ ~\{ detection
Actual images
after learning Error propagation (Minimize SNR)
Data As old as JPEG !l

Compression
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The JPEG Al Project
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5> JPEG Al Project

JPEG Al Project (ISO/IEC 6048) aims to develop and standardize
learning-based image compression
Joint standardization effort between SC29/WG1 and ITU-T SG16
Call for Proposals has been issued and all submissions evaluated
Collaborative phase has started towards the definition of a verification model

Many industry and academia involvement!

=PrL Wuuawer Hisense
HIKVISION

Tencent

URDUE

UNIVERSITY

Wi e Byte Dance

Data
Compression
Conference



52 JPEG Al Scope

The JPEG Al scope is the creation of a learning-based image coding standard offering
a single-stream, compact, compressed domain representation, targeting both human
visualization, with significant compression efficiency improvement over image coding
standards in common use at equivalent subjective quality, as well as effective
performance for image processing and computer vision tasks, with the goal of
supporting a royalty-free baseline

Data
Compression

ference

Image processing  Computer vision tasks

tasks

Super-resolution Image retrieval and classification
Low-light Object detection and recognition
enhancement

Color correction semantic segmentation

Exposure Event detection and action
compensation recognition

Inpainting Face detection and recognition

16



b

Data
Compression

JPEG Al Framework

Image Processed
processing  —» image
task
JPEG Al Learning-based Core Engine |
Latent
representation
Latent
representation
s Standard
Input _| > Transform Entropy > i 3 Entropy Standard_ |15 decoded
Image encoding L decoding reconstruction .
N image
Latent
representation
HEN |

(_)o_mputer ; Class, iject,
vision task semantic map,
etc.

Advantages for image processing and computer vision task:
Single-stream representation: same compressed stream is also useful for decoding
Energy efficient: reduces the resources needed to perform these tasks

High accuracy: allows performing these tasks using features extracted from the
original instead of the lossy decoded images

17



5> Application-driven Requirements

Data
Compression

High coding efficiency is important for many applications such as
cloud storage or media distribution

Content understanding is vital for many applications such as visual

surveillance, autonomous vehicles, image collection management, etc

Objects may need to be recognized
Images may need to be classified for organization purposes
Actions or events may need to be recognized

Content is not consumed by humans in the same way as the
original reference in many applications such as in media distribution

Noise can be reduced
Resolution can be increased
Colors can be corrected

18
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52 JPEG AI VM High Level Architecture

New architecture never proposed before

Works with YUV colour space and supports 4:4:4 and 4:2:0
Exploits spatial correlation with the analysis and synthesis transforms
Probabilistic latent model is obtained from side information (hyper-prior)

Two encoding pipelines are present, one for luma and another for chroma

Chroma pipeline encodes UV in half of the resolution of Y (and has less depth)
Independent pipelines using networks with same architecture, but different number of channels

N (,LL, Ny(,u'a 0-2)

S
Entropy Synthesis Y
Decoding Transform ”
RGB €
to g Post Zlix

YUV ? ¢ Color to —>
Synthesis UY
Transform g

— —

Data
Compression
Conference




b

Data
Compression

JPEG Al Key Characteristics fp’m&

Probability table for entropy coding is modelled with N(O,o) for every latent element

Latents are predicted and only the residual is coded and transmitted
Exploits spatial correlation at the latent domain

Entropy decoding is decoupled of latent prediction and reconstruction
Entropy decoding of a latent doesn’t depend on previously decoded latents

Hyper scale decoder
Provides estimation of the variance of the entropy coding model distribution

Hyper "mean” decoder
Provides estimation of the mean (explicit prediction) of the latent

22



52 JPEG AI VM Encoder Architecture

Hyper < : Entropy Encoder
—> —» Round —>
Encoder B (me-tANS) NN layers
Analysis |Y lassical
) Transform _< o
|
Bitstream
é T | Scaling and \ Entropy Encoder
X g Rounding me-tANS
..‘t O-
_ My &./ ' [ Hyper-scale
me-tANS: memory efficient tabular Decoder
Asymmetric Numeral Systems \ Z Entropy Decoder
MCM: multistage context model (me-tANS)

\ Latent Prediction < Hyper-mean
(MCM) Decoder

Data
Compression

23



52 JPEG AI VM Decoder Architecture

Bitstream
Synthesis ] 7  Entropy Decoder Entropy Decoder
Transform < (me-tANS) (me-tANS)
S |y o, z ‘ A
NN layers \ | Latent Prediction E Hyper-mean \___| Hyper-scale
classical (MCM) Decoder l Decoder
J

Data
Compression
C



52 Addressing Complexity Issues

Three operating points are supported:
CPU operating point targeting legacy devices
Base operating point targeting mobile devices
High operating point for more hardware-capable devices
with powerful GPUs and no energy constraints

Base operating point should provide 10-15% compression efficiency gains over
VVC Intra with approx. 22 kMAC/px

High operating point should provide 25-30% compression efficiency gains
over VVC Intra with approx. 220 kMAC/px|

]
] o
O

>

0

&
® o

) .

RSN b
42050,
XX

D’ AN b 0

3 o

L 4 (s a
4
H 3
Be

Data
Compression
( rerence
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52 JPEG Al Multi-branch Decoding

Receiver can support just one decoder (operating point) to decode any stream

________________ 1

I
jEncoder I \Decoder
I
I
I b Synthesis
I Analysis i Entr. —>»  Transform
- Transform —>Stream Z —> Decocc)jprz, SOP
| |With Attentio ! ing
: ng{lgzircr!)l:iaolr’ ! : Hyper¢scale
I Generation H decoder Conformance Conformance
| Iy point #1: residual point #2: latent
| and. | | i domain domain
| : Encoding I Ent Synthesis
| Analysis —»StreamY—y _-NOPY Transform
—» Transform . Decoding BOP
: Wo Attention . ¢
I
I | ' Hyper-mean Latent
£ TS S T . : Decoder Prediction
I
I
| Synthesis
| > Transform
| HOP
I
I

Data

Compression 2 Encoder x 3 Decoder = 6 possible combinations compatible to each other

nrerence

JPEG Al VM supports

Conformance
point: pixel
domain
Decoded
image

Conformance
point: pixel
domain

Decoded
image

Conformance
point: pixel
domain

Decoded
image

Higher
Quality

Higher
Complexity
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b

JPEG Al has a LOT of flag-enabled Tools

Skip mode allows skip writing/parsing from the bitstream residual latent elements
which can be identified by encoder and decoder to be zero

Variable rate coding with Gain Units

Model parameters defined by ModellD
“Gain” factor for residual & variance defined by A (signalled)

Residual and the standard deviation parameter scaling

Enhancement filters increase mostly the chroma quality

Quality

Data
Compression

bpp

Bitstream

A

me-tANS

A

z

Hyper-scale
Decoder

. » A Inv
Enhapcement Synthesis (_Latent Yy P’ Res. <« Gain <— De.c. «— me-tANS
Filters Transform Scal. Scal. . Skip
Unit
S <l
Core Latent Prediction Hyper-mean Sigma Scale
[ ] Tools (MCM) Decoder (_1 & Quant
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52 Tool Example: Enhancement Filter Technologies

Data
Compression

Enhancement filters bring 26% gain in Chroma PSNR

Linear chroma filter and non-linear chroma filter use signalled parameters and perform
upsampling/color correction

Inter channel correlation information filter provides enhancement of colour information
exploiting correlation with luminance

Luma edge filters adaptively enhances (scale) edges to improve decoded quality

Luma edges are detected
and intensified

Luma Edge

) ) = Luma
. Cross-component filter Filter
Aqtar\]ptlveﬁup§a:1ﬁ)lzr NN filter selected from a
with coett, signale set of pretrained filters T
Inter Channel
Chroma Llnear. Correlatllon Non-hnegr > Chroma
Chroma Filter Information Chroma Filter
Filter

Luminance T T T Non-linear filter with

convolution parameters
signalled

28



Data

Compression

5> Device Reproducibility

How does effect look like?

Due to the use of floating-point
arithmetic and different orders for the
operations the result depends on
platform heavily.

g

Leads to wrong interpretation of the Encoded and decoded on same device  Encoded and decoded on different devices
parsed symbols in arithmetic coder

Bitstream

. \ 4 \ 4
: - a nv
Enhapcement ¢ Synthesis (_Latent Yy T «r Res. <« Gain <— De.c. «— me-tANS me-tANS
Filters Transform Scal. Scal. Unit Skip
o) D —
|| core \ Latent Prediction : Hyper-mean Sigma Scale Pl Hyper-scale
[ Tools (MCM) Decoder (_1 & Quant Decoder
29
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52 Hyper Scale Decoder

[Chyw]

:)

ReLU(:.)
ReLU(:2)

_
&
= =
o -]
= o
< S
S S
) —
X X
o —
N’ p—
= =
= =
e}
S 3
o o

Figure 10.3-1 - Hyper Scale Decoder
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RelLU

Bit-exact behavior in entropy part
must be guaranteed!

convolution layer CONV
. ) Cin . ) o
out[coyt, i, j] = bias[cyye] + ng:o weigth[ci, Coyt] * input(ciy, s - 1,5 - jl;
i= 0, ---'hout - 1,] = 0, oy Wout — 1, Cout = 0, oeey Cout -1

w,

where “x” is 2D cross-correlation operator with kernel size Ko X Kp o

quantized convolution layer qCONV
.. three-steps operation:
templcin, i,j] = clip(=d,d — 1, input[cin, i, j]),
i= 0, ---:hin - 1;j = 0, oy Win — 1; Cin = 0, ---:Cin_ 1;

. . Con—1. . .
R[Coutv l:]] = blas[cout] + Zcin:() Welgth[cin: Cout] * temp[cin: S-LS ']] ;

where “x” is 2D cross-correlation operator with kernel size KyeXKpor--

. out(Cour, i, /1 = (RlCouts L, /1) > plcour;
L= 0, ...,hout - 1,] = 0, o Wout — 1, Cout = 0, ey CO‘U.t -1

The tensor weigth of shape [Cip, Cout, Kver» Knor] contains learnable 8-bit integer weights, the tensor
bias of shape [C,,;, ] contains learnable 31-bit integer biases. All parameters weigth and bias are part
of learnable quantized model.

The combination of clipping value d, de-scaling shifts p[c,,:] and magnitude for the quantized model
parameters allows control over bit depth of register R[cyy, i, j] (Quaranteed to be within 32 bits).

30



52> Spatial Prediction @ Latent Domain

Aims to predict the mean of J using the explicit prediction and residual decoded data
3D chess-board split of the tensor

Significant complexity reduction (minimizes serial processing) in comparison to previous
approaches such as wavefront parallelizable models with masked convolutions

w
c >
T — ofj2]of2 02 %
‘ S v —_ 301
B ,E: 3 - 31 (311
s | & = . 0|2
8| < ;u‘, S| #l4C hs,ws ] . 0fj2fo0j2
N % = - " - " 301
= 8 & 035 74| 72 3 o !
g % E y y y . — - v
1~ < = 0 1 ¥y YI[4C, hs, ws] o) N
MCM s H <
0 MCM, MCM, MCM; = -
5 A =9 s w
S ) . = S c >
S Ho P b2 P3
a oll2]oll2
5 oll2fol2 31|31
= Pi[4C, hs, ws] 30131 ofl2]0]2
=0,..3
olf2]o]2 ht G ]fs]
30131 v
q[4C, h, c—
Data al w] al0:C — 1,2k, 2w] a[C,2h,2w]
31

FomprSSJOﬂ “3D chess-board” split of tensor



5> Multistage (4-stage) Context Model

Hyper-mean encoder provides an explicit prediction derived from the hyper latent tensor

4-stage context model: concatenates and process already reconstructed latent sample groups
which are fused together with the explicit prediction of the hyper mean decoder

Fusion network

YN Y

A —_ ;? ~
. Yk ¥ S S
Residual T + > 8 & ¥
K=1...4 a[3C, hs, ws] § 2 ;\’ 3 E fig[C/2, hg, we]
—EnEsEnsr—
Fusion :‘" S S S
. ’
* V [13 ”
Hyper “mean” encoder
Hyper "mean" Conv
decoder GConv — e o
<lHsllg 12l eHEe ] g]S
P[Cpr ha, W] =2 Lol §5 < S I 2 e :— 2[C, hg, we]
4-stage context model < SHEAE HEAXAXAZI A XH %
sHENEHEN 22 EZ ] =l 2
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Compression S S 32
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52 Synthesis Transform
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52 Bring the Attention !
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52 Attention Blocks: Convolutional vs Transformer

Three branches to represent skip, feature
and mask (to improve receptive field)

input[C, h,w]—

RB(3 x3,C)
RB(3 x3,C)

CONV(3 x3,C,C,21)
RB(3 x3,C)
RB(3x3,C)

CONV-*(3x3,C,C,2 1)
Sigmoid(:.)

Figure 3.5.30-1 - Convolution-base attention block

output[C, h,w]

Data ‘
Compression
Conference

Three branches to represent query, key and value
Transposed-attention map A of size CxC is computed

)

Reshape(1,h-w,C)
LayerNorm

—J

input[C, h,w]

)

Reshape(C,h,w)

(

3c)

v

TensorChunk(3)

[ conv(ix1,c30)

]

I
Temperature

O]
SoftMax(:.2)

[gconv(z x 3,3¢,3¢,6

)
)
)
)

[Tmnsp(4,h ~w,C/4) ]
8c)

)

coNv(1x1,C,C) )

e

Reshape(1,h - w,C)
LayerNorm
Reshape(C,h,w)

CONV(1 x 1,C,8C)

TensorChunk(2)

butput[C, h, w]

Reshape (C,h,w)
CONV(1 x 1,8C,C)

[ Reshape(4,C /4 ,h - W)] [Reshape(4—,C/4,h -w)] [ Reshape(4,C/4,h - w)]
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Figure 3.5.39-1 Transformer-based attention block.




52 JPEG Al Region of Interest Decoding

The residual is multiplied by a gain tensor for local quality control
Quality index map is predicted, coded and inserted into the codestream

JPEG Al VM3.4 - 0.12 bpp

:

JPEG Al VM3.4 + ROI coding - 0.10 bpp

Data
Compression
Conference

ROI mask (white)
Allocating more bits
on the ROI and
fewer bits on the
background 36



52 JPEG Al Progressive Decoding

Data

Compression  SOP-Luma-4-Chroma-16 (14% of the bit-stream) SOP-Luma-8-Chroma-16 (18% of the bit-stream)

Conference

Partial decode part of the 160 channels of residual can reduce the time used for decoding.

SOP-Luma-0-Chroma-16 (9.3% of the bit-stream) SOP-Luma-1-Chroma-16 (11% of the bit-stream) SOP-Luma-2-Chroma-16 (12% of the bit-stream)

SOP-Luma-16-Chroma-16 (25% of the bit-stream)

37
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52 JPEG Al Dataset

00001_TE_2096x1 00002_TE_2144x1 00003_TE_1944x1
400_8bit_sRGB 424 _8bit_sRGB 296_8bit_sRGB

00011_TE_1512x2 00012_TE_1920x1 00013_TE_3680x2
016_8bit_sRGB 280_8bit_sRGB 456_8bit_sRGB

S
00021_TE_2192x1 00022_TE_1248x8 00023 _TE_2464x1
520_8bit_sRGB 32_8bit_sRGB 640_8bit_sRGB

(

X \

00031_TE_1752x1 00032_TE_7680x5 00033_TE_2120x1
856_8bit_sRGB 120_8bit_sRGB 608_8bit_sRGB

i -

00041_TE_3374x5 00042_TE_2787x4 00043_TE_945x84
055_8bit_sRGB 004_8bit_sRGB 0_8bit_sRGB

Data 4
Compression
Conference

— & -

Y = "

e
1

s

JPEG Al Test Set:
50 camera captured
Images

Training Set:
5000+ images
Validation Set:

350+ images



52 JPEG Al Additional Datasets

36 synthetic images

A -
[ E—
e i
s - e L B O]
- | g ; w EETTEL
11001_TE_2560x1 11002_TE_1180x1 11003_TE_1400x1 11004_TE_2864x1
440_8bit_sRGB 612_8bit_sRGB 048_8bit_sRGB 872_8bit_sRGB

12002_TE_1920x1 12003_TE_644x46  12004_TE_1024x7  12005_TE_1920x1
016_8bit_sRGB 2_8bit_sRGB 68_8bit_sRGB 080_8bit_sRGB

;;»-lw

13002_TE_2000x2 ~ 13003_TE_6068x3  13004_TE_1072x1 13005_TE_2800x1
496_8bit_sRGB 412_8bit_sRGB 500_8bit_sRGB 400_8bit_sRGB

%/~ 3 50
4 ‘v— ;r" enes

14002_TE_1920x1 14003_TE_624x90  14004_TE_1304x1 14005_TE_3000x3
496_8bit_sRGB 8_8bit_sRGB 940_8bit_sRGB 000_8bit_sRGB

Data _
Compression
Conference

11005_TE_1016x7
60_8bit_sRGB

12006_TE_1920x1
080_8bit_sRGB

13006_TE_3072x2
304_8bit_sRGB

14006_TE_3328x2
156_8bit_sRGB

11006_TE_2560x1
600_8bit_sRGB

12007_TE_2560x1
080_8bit_sRGB

13007_TE_1920x1
920_8bit_sRGB

14007_TE_1200x1
500_8bit_sRGB

=1

12001_TE_1848x1
080_8bit_sRGB

11007_TE_1280x7
20_8bit_sRGB

P~

12008_TE_3840x2
160_8bit_sRGB

13008_TE_2048x1
148_8bit_sRGB

14008_TE_3760x2
454_8bit_sRGB

11008_TE_1920x1
080_8bit_sRGB

13009_TE_2048x2
048_8bit_sRGB

14009_TE_2016x1
512_8bit_sRGB

13001_TE_2000x 1
128_8bit_sRGB

14001_TE_1024x1
024_8bit_sRGB

FRST EXOPLANET

14010_TE_1764x2
572_8bit_sRGB

12 HDR images
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52 JPEG AI RD Performance

tools-off: only “off-line trained”, no content
adaptation, no encoder search,

Choose Metric msssim Torch Choose Test Image AVG Choose Metric vmaf Choose Test Image AVG
1.000 95.0
0.995
90.0
0.990
0.985 850
0.980
0.975 e WVC 80.0 e WVC
0.970 —e—\/M-4-BOP-tools-off —e—\VM-4-BOP-tools-off
—e—VM-4-HOP-tools-off 75.0 ——VM-4-HOP-tools-off
0.965
0.960 70.0
0.2 0.7 1.2 0.2 0.7 1.2

Data _
Compression
Conference



RVS - Residual and Variance Scale
Filters — Adaptive re-sampler, ICCI (cross-color filter),

ﬁ JPEG AI VM4 RD Performance LEF (luma edge filter) and non-linear chroma filter

LSBS — Latent Scale Before Synthesis
CWG - Channel-Wise Gain

Base operating point !

5 points BD-rate (0.06, 0.12, 0.25, 0.5, 0.75) 10%
BD rate vs VWVC Max Dec. complexity C. comple;

msssim Bit MAX AVG Time . Time

Test AVG | Torch vif fim nipd iW-ssim vmaf | psnrtvs | Monotonicity | Dev. [kMAC/ox|kmac/px| Gpu x [ Model | ModelS | qp,
v4.4-tools-off-GPU -10.6% | -28.6% -1.2% -13.0% -9.8% -24.7% -0.7% 3.9% TRUE 317% 22 22 0.10 |2.93E+06| 1.17E+07 | 0.001
v4.4-tools-on-GPU -16.2% | -27.3% 1.8% -28.6% -13.4% -24.7% -26.4% 5.5% TRUE 393% 29 26 0.18 |3.38E+06| 1.32E+07| 0.002
v4.4-tools-off-GPU-LH -11.4% | -29.3% -2.0% -13.8% -10.6% -25.3% -1.6% 3.0% TRUE 314% 0 #DIV/0! [#VALUE!|2.93E+06 | 1.17E+07 | 0.001
v4.4-only-RDLR -12.4% | -30.6% -3.1% -14.5% -11.3% -26.0% -3.4% 1.8% TRUE 317% 22 22 0.10 |[2.93E+06|1.17E+07| 0.001
v4.4-only-ResVarScale0 -13.6% | -29.1% -1.5% -19.6% -13.2% -25.4% -8.6% 1.9% TRUE 343% 22 22 0.12 |[2.93E+06|1.17E+07| 0.001
v4.4-only-ResVarScale1 -14.2% | -28.6% -0.2% -22.5% -14.4% -25.1% -10.5% 1.8% FALSE 380% 22 22 0.12 |[2.93E+06| 1.17E+07| 0.001
v4.4-only-EnhancementFilters -11.2% | -28.4% -0.9% -14.3% -9.0% -24.6% -5.8% 4.7% TRUE 318% 28 25 0.14 |3.38E+06| 1.32E+07 | 0.002
v4.4-only-LSBS -11.5% | -28.7% -1.6% -12.1% -9.4% -24.7% -8.4% 4.6% TRUE 317% 22 22 0.11 |[2.93E+06| 1.17E+07| 0.001
v4.4-only-ECThread8 -10.6% | -28.6% -1.2% -13.0% -9.8% -24.7% -0.7% 3.9% TRUE 317% 22 22 0.10 |[2.93E+06| 1.17E+07| 0.001
v4.4-only-CWG -12.9% | -28.9% -0.7% -20.9% -12.0% -25.6% -5.6% 3.4% TRUE 328% 22 22 0.10 |[2.93E+06|1.17E+07| 0.001

High operating point !
5 points BD-rate (0.06, 0.12, 0.25, 0.5, 0.75) 10%
BD rate vs VVC Max Dec. complexity t. comple

msssim Bit MAX AVG Time " Time

Test AVG Torch vif fsim nipd iw-ssim vmaf psnrHVS | Monotonicity |  Dev.  |kMAC/x| kimaC/pu [ gpu, x | Mol | ModelS | gpy
v4.4-tools-ofi-GPU -25.2% | 38.7% | -16.3% | 26.6% | -241% | -35.9% | -228% | -11.7% | TRUE | 368% | 212 | 207 | 0.37 |9.97E+06]3.99E+07| 0.002
v4.4-tools-on-GPU -28.6% | -36.4% | 13.4% | 38.1% | -25.6% | -34.6% | -43.0% | -9.0% TRUE | 445% | 230 221 0.49 | 1.04E+07| 4.14E+07| 0.003
v4.4-tools-off-GPU-LH 25.9% | 39.3% | A7.0% | 27.4% | -249% | -36.5% | -23.6% | -12.4% | TRUE | 364% 0__[ #DIV/OI [#VALUEI|9.97E+06| 3.99E+07 | 0.002
v4.4-only-RDLR -26.7% | -39.6% | 17.2% | 26.8% | -24.4% | -36.3% | -23.3% | 12.3% | TRUE | 368% | 212 | 207 | 0.37 |9.07E+06|3.99E+07| 0.009
v4.4-only-ResVarScale0 -27.3% | -38.8% | -16.3% | -31.6% | -26.6% | -36.2% | -28.9% | 12.9% | TRUE | 392% | 212 | 207 | 0.38 |9.97E+06|3.99E+07| 0.002
v4.4-only-ResVarScale1 -27.6% | 38.3% | -16.4% | 32.4% | -27.3% | -35.9% | -30.56% | -13.1% | FALSE | 436% | 212 | 207 | 0.39 |9.97E+06|3.99E+07| 0.002
v4.4-only-EnhancementFilters -25.6% | -38.4% | -16.0% | -28.6% -23.4% -35.7% -26.7% -10.7% TRUE 369% 218 209 0.40 |[1.04E+07|4.14E+07| 0.003
v4.4-only-LSBS -25.7% | -38.7% | -16.6% | -25.8% -23.8% -35.9% -28.4% -11.0% TRUE 368% 212 207 0.38 |[9.97E+06| 3.99E+07 | 0.002
v4.4-only-ECThread8 -25.2% | -38.7% | -16.3% | -26.6% -24.1% -35.9% -22.8% -11.7% TRUE 368% 212 207 0.36 |[9.97E+06| 3.99E+07 | 0.002
C V44:Ol?|y‘-CWG -26.9% | -38.4% | -15.7% | -34.2% -25.5% -36.1% -27.0% -11.7% TRUE 376% 212 207 0.35 |9.97E+06]| 3.99E+07 | 0.002



52 Performance with Multi-branch Decoding

Only differ in the analysis and synthesis transforms

EncO — Synthesis Transform without attention

Enc1 — Synthesis Transform with attention

SOP — Simple operating point
BOP — Base operating point
HOP — High operating point

5 points BD-rate (0.12, 0.25, 0.5, 0.75, 1.0)

Data

BD rate vs VVC-012-025-050-075-100 Dec. complexity | Enc. Comp.
msssim kMAC/px] Time
Test AVG Torch vif fsim nlpd iw-ssim vmaf psnrHVS | GPU, x | Time GPU
v5.1-Enc0-SOPDec-tools-off-GPU -12.4% -31% 2.8% -15% -13% -27% -5% 0.9% 8 0.1 0.0004
v5.1-Enc0-SOPDec-tools-on-GPU -17.5% -32% 4% -24% -15% -28% -28% 0.4% 13 0.2 0.0017
v5.1-Enc0-BOPDec-tools-off-GPU -16.3% -33% -2.2% -20% -16% -29% -11% -3% 22 0.1 0.0004
v5.1-Enc0-BOPDec-tools-on-GPU -21.0% -33% -1.2% -28% -18% -30% -32% -4% 26 0.2 0.0017
v5.1-Enc1-HOPDec-tools-off-GPU -24.0% -38% -12% -30% -22% -34% -21% -11% 214 0.4 0.0010
v5.1-Enc1-HOPDec-tools-on-GPU -28.0% -38% -11% -38% -24% -34% -40% -11% 216 0.4 0.0023
For the CPU platform, the decoder complexity is 1.6x/3.1x times higher compared to VVC
Intra (reference implementation) for the simplest/base operating point.
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'VWC 0.50 bpp " ~ VM3.4-HOP-tools-on 0.44 bpp
VMAF = 80.3 PSNR-Y 31.4 MS_SSIM = 0.987 VMAF=88.07 PSNR-Y=30.6 MS_SSIM = 0.992

Original




Data 4
Compression
Conference

VVC/H. 266
.
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52 JPEG Al Decoder on Smartphones

Main targets:

Demonstrate to the world that
JPEG Al can fly on smartphone right now
even without dedicated chip

Identify JPEG Al design issues
preventing deployment on mobile
platform as early as possible

Verify device interoperability
of JPEC Al standard

Configuration: JPEG Al CE6.1/VM3.4 base operating point

Device #1: Huawei Mate50 Pro with Qualcomm Snapdragon 8+ Gen1
Device #2: iPhone 14/15 Pro Max, 1K patch images

Data A
Compression
Conference
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JPEG Al Smartphone Demos

Huawei Mate50 Pro

Data
Compression

v“'\"k C

Iphone 14 Pro Max

49



Going Forward ...
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»*  Biological Inspired Acquisition
Deep learning already disrupted compression! What about sensing?

Differential visual sampling model in which time-domain changes in the incoming
light intensity are pixel-wise detected and compared to a threshold, triggering an
event if it exceeds the threshold.

Rod cell Bipolar cell Retinal ganglion cell

- N Event (+)
o = ﬁ Event (-)

Data , Light receiving Unit Amp Unit Comparator
Compression : :
( rerence :
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52 Event-based or Neurmorphic Imaging

Event cameras each sensor pixel is in charge of controlling the light
acquisition process in an asynchronous and independent way

According to the dynamics of the visual scene
Producing a variable data rate output

Relevant advantages:
High temporal resolution
Very high dynamic range
Low latency
Low power consumption
No fixed frame rate

Data
Compression




52 New Exploration Activity !

K
.

JPEG

The scope of JPEG XE is the creation and development of a standard to
represent Events in an efficient way allowing interoperability between
sensing, storage, and processing, targeting machine vision applications.

Data
Compression
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b

JPEG AI Next Steps

Profile/level and conformance discussion has started and is ongoing

Version 1 addresses several (but not all) JPEG Al ‘core’” and ‘desirable’ requirements
with emphasis on compression efficiency for standard reconstruction

Version 2 will address/include:

JPEG Al requirements not yet addressed in version 1, e.g. related to processing and computer

vision tasks

Significantly improved solutions for JPEG Al requirements already addressed in Version 1, e.g.

compression efficiency

Part

Title

JPEG AI: Core Coding System

JPEG AL Profiling

JPEG AI: Reference Software

JPEG AI: Conformance

JPEG AI: File Format

Data
Compression

Part | Title WD [ CD | DIS | FDIS| IS
1 | JPEG AI: Core Coding System | 23/01 | 23/10 | 24/04 - 24/10
2 | JPEG AL Profiling 24/01 | 24/04 | 24/07 - 25/01
3 | JPEG AI: Reference Software 24/07 | 24/10 - 25/04
4 | JPEG AI: Conformance 24/07 | 24/10 - 25/04
5 | JPEG AL File Format 24/07 | 24/10 - 25/04
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52  Final Remarks

The first learning-based image compression international standard is under
active development!
Significant higher compression efficiency compared to the best performing
conventional image coding solutions, notably H.266/VVC and H.265/HEVC
Can be efficiently deployed in resource-constrained mobile devices
Much less encoding complexity, online encoder search is now done offline

Main challenge is to have a multi-purpose bitstream (THE visual language) that
is good for a multitude of visual tasks!
Not only image compression but for content understanding and image enhancement!

“Artificial Intelligence” can be brought to the sensing process to have an even

more rich visual data representation!

Data
Compression



Thank you for

your hard work
and dedication!







