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What is compression?

Consider data compression in the sense of Shannon

(1949,1959) and not in the older sense of bandwidth

compression.

To be compressed analog signals must be converted into bits.

Dimension reduction alone is not compression—

mathematically there is an invertible correspondence

(isomorphism) between all continuous time waveforms and

the real numbers, so there is no compression of information

going from one to the other. BW = ∞ → BW = 0

X =
{Xt; t ∈ (−∞,∞)}

- f -

DC value

Y = f(X) ∈ R

f−1 - X = f−1(Y)
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Compression Basics in Hindsight

Source Signal

X = {Xt; t ∈ T } -
encoder
E

-

bits

Z
decoder
D

-

reproduction

X̂

Key properties:

• Distortion: distortion measure, fidelity criteria

squared error dominates literature

average distortion d(E,D)

• Rate: actual bits or entropy rate r(E)

d vs r : beginnings, theories, highlights, and lowlights
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Origins

First genuine compression system for analog signals: PCM

[Reeves (1938), Bennett (1948), Oliver, Pierce, Shannon

(1948)] uniform quantization A/D-conversion
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source
{X(t)} -

sample
(quantize

time)

{Xn}
-

q
quantize

amplitude
-

{X̂n} lossless
code

?

bits

decode�

{X̂n}
PAM�

reproduction
{X̂(t)}

In digital age, input is often discrete time and do not need to

sample. Compression usually treated as discrete time

problem, quantization as scalar memoryless nonlinear

mapping:

Xn - q - X̂n = q(Xn)

q(x) = D(E(x))
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quantizer error = e(x) ∆= q(x)− x ⇒ q(x) = x + e(x)

suggests Xn -��
��
+
?

en

- X̂n = q(Xn)

A additive noise “model”

but not really a “model” unless assume specific behavior for

en rather than derive from input statistics and quantizer

definition — most common assumption en uniformly

distributed, independent of the signal, and iid — often called

the “white noise model” for uniform quantization
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Theories of Compression
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Exact Analysis

Some systems can be solved exactly via methods from

nonlinear systems, especially “transform method” [Rice

(1944)]

Clavier, Panter, and Grieg’s (1947) analysis of the spectra of

the quantization error for uniformly quantized sinusoidal

signals, Bennett’s (1948) series representation of the power

spectral density of a uniformly quantized Gaussian random

process.

Quantizer error for 10 bit uniform quantizer

with sinusoidal input:
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Widrow (1956,1960,1961) used ideas from sampling theory

to show that if q has infinite levels and the characteristic

function φX0(u) = E(ejuX0) of the marginal input density has

the “band-limited” property

φX0(u) = 0; |u| ≥ 2π/∆ (Widrow)

then the quantizer error distribution ∼ U(−∆/2,∆/2),
d = ∆2/12. turns out sufficient but not necessary.

Fueled interest in white noise model: Quantizer error

moments behave as if white noise model held.

Few interesting distributions satisfy this property, usefulness

is minimal. But characteristic function method proved very

useful!
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Sripad and Snyder (1977) showed a necessary and sufficient

condition is

φX0(
j2πl∆ ) = 0; l 6= 0 (Sripad-Snyder)

fX0 = U(−∆/2,∆/2) satisfies (Sripad-Snyder) but not

(Widrow). Also showed that 2D version a
joint error pdf product of uniforms.

Problems with approach:

1. Requires an infinite level quantizer.

2. Extremely limited class of input distributions e.g.,

U(−∆/2,∆/2)∗k.
3. Original papers generated considerable confusion about

appropriateness of white noise model.
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High Rate Quantization Theory

Bennett (1948), Oliver, Pierce, and Shannon (1948): uniform

quantization, input support of width A divided into M = A/∆
intervals of width ∆ ↓ 0 has average MSE ≈ ∆2/12 ⇒ 6dB per

bit — essentially same result appeared in Sheppard (1898)

Bennett (1948) also argued that quantizer error distribution

was roughly uniform and that the power spectral density of

quantization error was approximately flat in the signal

bandwidth, independent of the input signal. Subsequently

used to justify white noise model. Does it?

What does high rate regime actually imply about quantization

error?
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Long believed and finally proved by Lee & Neuhoff (1996),

Viswanathan & Zamir (2001), Marco & Neuhoff (2005): If

a) input marginal distribution smooth and fixed with finite

support

b) uniform quantizer on support of input density

c) large rate and small quantization intervals

d) all pairwise-joint input distributions are smooth and fixed

then the quantizer error en behaves approximately like

additive noise that

1. is uncorrelated with the signal

2. has a uniform marginal distribution

3. has a flat power spectral density

 weak white noise model
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Bennett (1948), Oliver, Pierce, and Shannon (1948), Panter

and Dite (1951), Lloyd (1957): Asymptotic approximations

for d and r for nonuniform quantization in the limit of many

quantization levels (R →∞,D → 0)

Zador (1963) extended high rate theory to vectors and

entropy and Gersho (1979) developed an intuitive

simplification and popularized the theory.

Gish & Pierce (1968) developed an intuitive high-rate theory

for entropy.

Conway and Sloane (1982) applied to lattice VQ.
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Shannon Rate Distortion Theory

Shannon (1948,1959), Gallager (1968), Jelinek (1968), Berger

(1971): Shannon modeled lossy compression as block coding

(=vector quantization (VQ)). Bounds on performance

R(D),D(R) for block codes which are theoretically achievable

in limit as vector dimension →∞.

Implicit in Shannon: If decoder D is fixed, optimal encoder

E performs minimum distortion search (nearest neighbor,

dynamic programming, Viterbi algorithm)

X = {Xt; t ∈ T } -

Minimum
Distortion

Search

-

bits

Z
decoder
D

ROM or nonlinear filter/SBC

-

reproduction

X̂

Fundamental point: Shannon assumed E drives D so as to

produce minimum distortion output d(E,D), E optimal for D
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“Model” Compression NoiseA

Replace hard part of analysis by simplifying assumption.

“Wishful thinking” approach. Replace quantizer by an additive

signal-independent white uniform noise

Xn - q -X̂n = q(Xn) ??
≈ Xn -��

��
+
?

Wn

- X̂n = q(Xn)

Good news: Linearizes nonlinear system, simplifies a very

difficult (maybe impossible) analysis of correlation and

spectra, especially if q inside a feedback loop.

Most commonly used "theory" for ADC analysis.
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but Bad newsA: It’s wrong!!

• quantizer error is a deterministic function of the input, so

input and quantizer error can not be independent.

• The quantizer error will not be iid unless input joint

characteristic functions satisfy 2D (Sripad-Snyder) condition;

e.g., input is iid.

Good news: High rate regime ⇒ weak white noise model

gives a good approximation, but need to validate required

underlying assumptions a)–d).

More bad newsA: Vast majority of literature simply

assumes model without validating required conditions. If

conditions violated, predictions of actual performance can be

wildly inaccurate. E.g., discrete tones in audio compression.
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For example, high-rate theory does not apply to feedback

quantization systems like Delta Modulation, predictive

quantization (DPCM), and Σ−∆ modulation because there are

not fixed quantizer input distributions as rate increases.

E.g. problems with “theory” in VandeWeg’s (1953) analysis of

Delta modulation, Inose & Yasuda’s, “A Unity Bit Coding

Method by Negative Feedback” (1963) classic elaboration of

Cutler’s (1954) Σ∆ or ∆Σ ADC, O’Neal’s “Differential

Pulse-Code Modulation (PCM) with entropy coding” (1976)

Furthermore, often M = 2, not high rate!

NO rigorous results justifying the white noise model — strong

or weak — for feedback quantization!
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Dither

There are perceptual reasons (eye and ear) to want quantizer

error to be independent of the input signal and white.

Can force similar noise-like behavior of quantization error if

use subtractive dither.

Roberts (1962) proposed adding a random or pseudo-random
signal to input signal prior to quantization and subtracting it
after decoding: Wn signal-independent uniform iid

Xn -��
��
+
?

Wn

- q -��
��
+
?

−Wn

- X̃n = q(Xn +Wn)−Wn
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εn = X̃n −Xn︸ ︷︷ ︸
quantization noise

= q(Xn +Wn)−Wn −Xn︸ ︷︷ ︸
quantization error

= en,

Schuchman (1964) (a Widrow student) showed that if

φW(
j2πl∆ ) = 0; l 6= 0, (Schuchman)

then the quantizer noise εn will be uniformly distributed and

independent of the quantizer input. Sherwood (1985) showed

also iid if the 2D extension of (Schuchman) holds.

Example: W ∼ U(−∆/2,∆/2)
Here the condition is on the dither distribution and not the

input distribution, the result holds for any input provided that

Pr(q overloads ) = 0.
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Problem: Requires receiver know dither signal, hence either

must also communicate perfect dither or use pseudorandom

noise, in which case the theorem does not hold.

In real world usually use non subtractive dither

Xn -&%
'$

+
?

Wn

- q - X̂n = q(Xn +Wn)

Schuchman’s result remains valid for the quantization error

en = q(Xn +Wn)− (Xn +Wn), but not for the overall

quantization noise εn = X̂n −Xn — an unfortunately common

error in a major text [Jayant and Noll (1984) p. 170] and

many papers.
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Non subtractive dither can not make the quantizer noise εn
independent of the signal or independent of εk, k ≠ n. It can

force conditional moments of the error given the signal to be

functionally independent of the signal and it can force

uncorrelation of signal and error, but Schuchman’s condition

is not enough.

Wright (1979), Stockham (1979), Brinton (1984), Vanderkooy

and Lipschitz (1984) showed that for a positive integer k

E[εk|X] = E[εk] = 1
jk
dk

duk
[φW(u)φU(u)]|u=0 = E[(W+U)k] iff

dk

duk
[φW(u)φU(u)]|u=2πl/∆ = 0; all l 6= 0

If true for k = 1,2 then quantization noise and signal will be

uncorrelated, quantization noise uncorrelated, &

E[ε2|X] = E[ε2] = E[W 2]+ E[U2] = ∆2/4.
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An important example is the convolution of two uniform

densities — the triangle pdf first used commercially in 1979

in the Fleetwood Mac Tusk album by Tom Stockham, the

founder of Soundstream, the first digital audio recording

company in the U.S. uniform failed, triangular worked
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Lloyd Optimization

Constrain code structure and find necessary conditions for

optimality for each component given the others for a given

input distribution. Design code by sequentially optimizing

each component for the other a descent algorithm

Original example in quantization: Lloyd (1957) “Least squares

quantization in PCM,” Lloyd Method I for design of scalar

quantizer for given input distribution and squared error.

Alternate optimizing encoder for decoder:

minimum distortion mapping into reproduction codebook

(i.e., Shannon minimum distortion E for given D)

and optimizing decoder for encoder:

replace decoder codebook by centroids wrt distortion
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Lloyd et al.

Lloyd proved optimality properties using fundamental

principles and did not use variational methods requiring

differentiability. His results and his algorithm therefore

extended immediately from scalar to vector, from squared

error to any distortion measure possessing centroids, and

from probability density functions to general distributions —

including empirical distributions.

Steinhaus (1956) scooped Lloyd by using non variational

techniques (= moment of inertia of an object about a vector is

minimized if the vector is the centroid of the object) to

demonstrate optimality conditions for a quantizer in 3D

Euclidean space and a discrete distribution.
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Several similar results were found earlier for statistical

stratification or grouping: Lukaszewicz and Steinhaus (1955)

considered an absolute magnitude distortion (centroid =

median), Dalenius (1950), Dalenius and Gurney (1951), and

Cox (1957) considered an equivalent problem in optimal

stratification using squared error. All used variational

methods and their results did not easily extend to general

distortion measures and vector spaces. Cox further assumed

normality and derived conditions for 2D.

Important theoretical point: For squared error distortion,

centroid condition of optimal decoder ⇒ quantizer error is

uncorrelated with output, but strongly correlated with input

⇒ white noise model breaks down for uniform quantization if

use optimal (MMSE) codebook instead of interval midpoints.
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Lloyd’s Method II – later rediscovered by Max (1960). Became

quite popular for scalar MMSE quantizer design, but does not

generalize.

[Fine (1964)], Gish (1967)] developed similar ideas for

feedback quantization like ∆-modulation

Ideas extended to entropy-constrained quantization by Berger

(1972), Farvardin and Modestino (1984) using Lagrangian

distortion R + λD, now common in variable rate compression.
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Vector Quantization

Lloyd’s Method I (1957), Steinhaus (1956), Zador (1963)

developed necessary conditions for optimality.

Basic ideas rediscovered in the statistical literature by Forgey

(1965), Ball and Hall (1965), Jancey (1966), and MacQueen

(1967) who named the method k-means. Steinhaus (1956)

often credited with inventing k-means.

Can optimize multiple sets, e.g., gain-shape VQ in many

vocoders [Sabin (1982,1984)] (almost always suboptimal in

literature, needless division by gain)

Clustering ideas applied to LPC for speech [Chaffee & Omura

(1974), Chaffee (1975)] and image coding and classification

[Hilbert (1977)]
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Other Theories of Data Compression

There are a variety of methods aimed at particular types of

compression. See e.g. L.D. Davisson’s review [“The

theoretical analysis of data compression systems,” IEEE

Proceedings, (1968)] for a discussion of predictive,

interpolative systems, and adaptive systems.

In addition to theories providing bounds, approximations,

and formulas for optimization, much of the literature relies

on simulation to validate heuristically derived

approximations and models.
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Shannon Theory vs. High Rate Theory

Simple entropy coded PCM only 1/4 bit from Shannon

optimum under suitable conditions [Goblick & Holsinger

(1967), Gish & Pierce (1968)]

So why bother to try harder?

Some extensions exist (e.g., Ziv’s result using subtractive

dither (1986)).

Often can do much better if can capture more signal

structure, e.g., LPC and CELP/AbS

Furthermore, Shannon D(R) computed for models, not for

actual signals. D(R) for model may be far from D(R) for

actual process (e.g., speech is NOT Gaussian, so D(R) based

on Gaussian is worst case)
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Lastly, perceptual distortion measures may better reflect

perceived quality than MSE (implicit in LPC, explicit in CELP)

[Budrikis (1972), Stockham (1972), Safranek and Johnston

(1988-9)]
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A Few Historical Highlights
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Combine scalar quantization with other signal

processing

?Precede quantization by invertible linear transform/filter

decorrelate vector components and concentrate energy in

lower order coordinates, reduce dynamic range.

Scalar quantize output.

Can optimize bit allocation among quantizers.
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Transform coding (VQ using scalar quantizers)

X

X1

X2

Xk

-

-

...

-

T

Y
-

-

-

q1

q2

...

qk

Ŷ
-

-

-

T−1

-

-

...

-

X̂1

X̂2

X̂k

X̂

[Kramer & Mathews (1956), Huang & Schultheis (1962-3)]

Fourier, cosine [Ahmed, Natarajan, Rao (1974), Chen and

Pratt (1984)], JPEG [C-Cube et al. (1991)], wavelets

[Antonini, Barlaud, Mathieu, & Daubechies (1992), Shapiro

Zero-trees (1993), Said-Pearlman SPHIT (1996), Taubman

EBCOT (1999, JPEG 2000)]
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Dominates still image coding (JPEG, JPEG 2000). Included in

most video coders

JPEG was a huge success, significantly helped by a

specific market – pornography1

Subband coding (SBC). Variation on transform coding. Can

incorporate perceptual weighting into distortion measure,

various frequency decompositions. Dominates audio

coding (mp3 is transform/subband coding + perceptual

coding). Woods & O’Neil for images (1986)

1Jonathan Dotan, a co-producer of HBO series Silicon Valley about a lossless
compression startup, is creating a website to go with a planned episode which will
tell the story of the pornography industry’s influence on imaging technology, including
daguerreotypes, JPEG, VHS, Quicktime, DVDs. Stay tuned.
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?Quantization inside a feedback loop (SBC)

∆-modulation Derjavitch, Deloraine, and Van Mierlo (1946),

Cutler’s U.S. Patent 2,605,361 (1952), DeJager’s Philips

technical report on delta modulation (1952). More

generally, Cutler’s (1952) patent introduced predictive

quantization (DPCM). Video coding dominated by motion

compensation (predictive coding) + transform coded

residuals (H.26*).

Xn -����++
6

X̃n
−

-

en
q

ên
-in Binary
Encoder

-

����++
X̂n

?+
-

P �

- Binary
Decoder

in- q−1 -

ên
����+ -X̂n

�P
6

X̃n

+
+
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Σ−∆ modulation Cutler’s U.S. Patent 2,927,962 (1960), Inose, Yasuda,
and Murakami (1962), Inose & Yasuda (1963)

Cutler’s (1960) patent also introduced “noise shaping” quantization.
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Tree/Trellis Encoding

Origins in tree and trellis channel decoders and

delayed-decision coding with DPCM: populate tree with DPCM

outputs and encode by minimum distortion tree search.

Fano, (M,L), M algorithms:[Jelinek (1969), Jelinek and

Anderson (1971) Anderson and Jelinek (1973), Dick, Berger,

and Jelinek (1974), Anderson and Bodie (1975)]

Trellis encoding: [Viterbi and Omura (1974)] decoder is

sliding-block code, encoder is Viterbi algorithm search of

trellis

Trellis coded quantization improves on trellis encoding,

lower complexity [Marcellin and Fischer (1990), M. W.

Marcellin, T. R. Fischer, and J. D. Gibson (1990)]
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Model Coding

Form synthesis model of input signal, quantize model

parameters.

Receiver synthesizes local reproduction from model

description, match spectra not waveforms

Primary example, speech coding/vocoding

Linear predictive coding (LPC) [Itakura (1966), Atal and

Hanauer (1971)]

Linear Prediction Observe data sequence {X0, X1, . . . , Xm−1},

linear predictor X̂m = −
m∑
l=1

alXm−l

εm = Xm − X̂m =
∑m
`=0a`Xm−` where a0 = 1.

a ∆= (1, a0, · · · , am)
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LP problem αm = min
a:a0=1

E(ε2
m); aa A(f) =

m∑
n=0

ane−i2πnf

Suggests LP model for synthesizing speech — yields roughly

same spectra as input

White Noise •
unit gain

Pulse Train •

-@
@
@I √

αm/A(f) -
Synthetic
Speech

LPC model: a,αm, voicing decision, pitch (if voiced)

but no coding yet, need to produce bits · · ·

Select best approximation σ̂ /Â to model from a finite set.

Traditionally done by scalar quantization of parameter

vector from [Saito and Itakura (1966)]:
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LPC and VoIP

LPC was combined with original Network Communications

Protocol (NCP) by Danny Cohen and the Network Speech

Communications Group to obtain first understandable

realtime two-way LPC packet speech communication. 3.5 kbs

over ARPAnet between CHI and MIT-LL (1974) . Ancestor of

VoIP and all real-time signal communication and streaming on

the Internet — combine compression with suitable network

protocol.
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Very Low Rate Speech Coding

Early LPC produced understandable speech at low rates (e.g.,

2400 bps), but quality not high

Could get comparable quality at lower rates using VQ on the

parameters [Chaffee & Omura (1974–1975), Buzo,

Matsuyama,Gray2, Markel (1978–1980)].

800 bps Speech Coder [Dave Wong, Fred Juang, A.H. (Steen)

Gray (1982)] very low rate, good quality for secure and

military applications.

To get high quality with more bits needed something better.
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CELP/VXC/AbS Waveform Coding

Incorporate compressed model into closed-loop waveform

coder for original signal.

Idea: Instead of receiver generating locally the excitation to

the model filter for synthesis, send best digital input

sequence to filter in sense of matching model output to

original signal — Choose VQ codeword yielding excitation

with minimum overall distortion from input vector to final

reproduction vector.

Y. Matsuyama (1978, 1981,1982) incorporated LPC VQ model

into an LP-based waveform coder with minimum perceptually

weighted squared error distortion match of input speech to

output of model filter driven by residual/excitation codebook

(using tree waveform encoding)
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First idea: universal code — design LP models by Lloyd

clustering using spectral distortion [Buzo (1978)], pick best

model/excitation combination by parallel trees search:

Encoder Residual
Codebook

Ce residual/excitation codewords
Ce = {ci; i = 0,1, . . . ,2Re − 1}

?

σ1/A1

?

σ2/A2

?

σK/AK LPC Codebook CLP

K = 2RLP

· · ·

• • •
XL -minimum distortion selection of i, k - (i, k)

Decoder

(i, k) -

?

Ce,CLP

ci - σk/Ak - X̂L
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Second idea: Pick LP model first using spectral distortion,

then code tree colored by that model:

Hybrid Code

Xn -

-

-

LPC-VQ - in

?

σi/Ai(z)

?

Waveform
Codebook

- un

�
Residual

Codebook

un

in

-

- ROM

?

Decoder

Codebook

- X̂n

Both systems are LP models excited by an excitation

codebook. In hindsight can also interpret as early example of

forward adaptive VQ, classified or switched codebook VQ,

analysis-by-synthesis VQ, and code excited linear prediction.
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Adoul, Debray, and Dalle (1980) proposed a similar system

which selected one of a collection of predictors for a DPCM

coder designed by Lloyd clustering with respect to a spectral

distance. VQ on predictor selection, not on residuals

Stewart (1981, 1982) extended (and credited) Matsuyama to

large model codebooks, trellis waveform codes (VA) designed

based on training data using a simple perceptual distortion

weighting.

Schroeder and Atal (1981) introduced an AbS coder under the

assumption of perfect (no quantization) LP coefficients and

tree encoding of residual.

Atal and Remde (1982) introduced a multipulse driven LP

model for AbS coder. Also assumed perfect LP coefficients.
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Atal and Schroeder (1984) incorporated quantization of the

model and introduced the name code excited linear prediction

(CELP).

Most histories of voice coding attribute invention of CELP and

AbS LP coding to these three Atal et al. papers. Stewart is

rarely (and Matsuyama almost never) mentioned.

Adoul et al. introduced CELP with low complexity algebraic

residual codes (ACELP) (1987), ancestor of compression in

most cell phones

nearly 6.8 billion, almost 1/person on earth

With time CELP incorporated many bells and whistles,

including long and short prediction, fixed and adaptive

codebooks, and post-filtering. Led to Federal Standard CELP

(1991) and later cell phones and VoIP.
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A Few LowlightsA

For some reason the field of data compression seems

to attract more than its share of scammers, and in a few

cases they have managed to collect millions of dollars in

investment money before either being exposed, indicted,

or disappearing. Mark Nelson, Dr Dobb’s Bloggers

From The data compression news blog,

www.c10n.info/archives/415: The standard compression

scam is executed with the following steps:
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• Visionary develops an astonishing breakthrough in compression.

• Company announces this amazing breakthrough without any validation,
to promote himself and his company (the company has already issued
several statements and releases on this technology).

• Visionary surrounds himself with key names, hires an ex-Qualcomm
division president

• Makes sure that all management in the company are “in” through
issuing stock (all upper management, the BOD and audit committee
members have received stock or options from IPEX, or associated
companies Digicorp (NASDAQ:DCGO) and/or Patient Safety
Technologies (AMEX:PST)).

• Files patents with major patent firm (though they will never be issued).

• Throughout the process, insiders sell off millions of shares pocketing a
fortune.

• Investors spend millions on a triumph of “hope over reality”. The
company eventually folds leaving investors holding the bag.
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Some examples:

Zeosync (2002) Guaranteed lossless 100:1 compression of

any data. $50 M loss.

Zeosync explicitly claimed that they superseded Claude

Shannon’s work.

Jan Sloot Claimed amazing new compression album that

could compress a 1 hour HD move down to 8 Kbytes.

Mysteriously died in 1999 the day before being funded by

venture capitalists. http://en.wikipedia.org/wiki/Jan Sloot,

www.endlesscompression.com.

Web Technologies (1995) Datafiles/16 Claimed could

compress files larger than 64kB to about 1/16 original size.

DataFiles/16 compressed files, but when decompressed,

those files bore no resemblance to their originals.
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June 1992 Byte, Vol 17 No 6:

According to Earl Bradley, WEB Technologies’ vice president

of sales and marketing, the compression algorithm used by

DataFiles/16 is not subject to the laws of information

theory.

Repeated or iterated or recursive compression Jules

Gilbert’s 1992 patent. Patent claimed to compress any

digital file losslessly by at least one bit.

Fractal Codes Barnsely and Sloane (1987, 1988 Byte

(10,000:1),1988 DCC (1,000:1)). Chaos and iterated

function systems (IFS), Iterated Systems, Inc. (incorporated

1988).

And then there are the simply silly:
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Confusion of compression with dimension reduction

Projection/downsampling/compressive sampling is not

compression in Shannon sense until consider conversion

into bits.

Equal Area/ Maximum Entropy Quantization (1971, 1973)

Use in LPC speech quoted led to Markel’s Theorem: Any

system is optimal according to some criterion.

Compression Ratio Confusion If original codebook size

N1 = 2R1 and reproduction codebook size N2 = 2R2, is

compression ratio N1/N2 = 2R1/2R2 or

log2N1/ log2N2 = R1/R2?

E.g., if VQ with original codebook (vector alphabet) of size

1024 = 210 and reproduction codebook of size 2 = 21, is

the compression ratio 1024 : 1 or only 10 : 1?

History 53



Back to the Future:

Task-oriented Quantization
Combining compression with signal processing:

(classification, estimation, information extraction, learning),

task driven quantization or functional quantization. Many

examples show better to design compression in context of

application, e.g., quantizing sensor readings for eventual use

in classifiers. [Itakura (1966), Hilbert (1977), Kassam (1977),

Poor and Thomas (1977), Picimbono and Duvaut (1988),

Gersho (1996), Misra, Goyal, and Varshney (2008)]

A few other omitted important topics: Effects of channel

noise, distributed quantization, universal lossy compression,

multiple description , noisy source quantization, successive

refinement/multiresolution/layered/progressive.

— FIN —
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