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David A. Huffman (1925-1999)

http://www.huffmancoding.com/my-uncle/scientific-american

(Photo by Matthew Mulbry, originally for Scientific American, Sep. 1991)

http://www.huffmancoding.com/my-uncle/scientific-american
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Querying “David A. Huffman”



1,000,000 Years
Since Huffman

David A. Huffman

Huffman, 1951

Bounds

Implementation

Variants

Arithmetic Coding

Gallery

Querying “Huffman”



1,000,000 Years
Since Huffman

David A. Huffman

Huffman, 1951

Bounds

Implementation

Variants

Arithmetic Coding

Gallery

Querying “Huffman”



1,000,000 Years
Since Huffman

David A. Huffman

Huffman, 1951

Bounds

Implementation

Variants

Arithmetic Coding

Gallery

Querying “Huffman”



1,000,000 Years
Since Huffman

David A. Huffman

Huffman, 1951

Bounds

Implementation

Variants

Arithmetic Coding

Gallery

David A. Huffman ...

I Engineering at Ohio State University, graduated at 19.

I War service in the Pacific with US Navy.

I Masters in Electrical Engineering at OSU in 1949 as a
veteran, then to MIT for doctoral studies.

I Took “Switching Theory” subject in 1951 while waiting
to re-take doctoral exams.

I Graduated PhD in 1953, The Synthesis of Sequential
Switching Circuits; faculty at MIT 1953–1967; faculty
at UCSC 1967–1994; Chair 1970–1973.

I Awarded IEEE Hamming Medal, 1999.

I Principal body of work in area of flexible surfaces and
folding, including a gallery show.
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... And His Famous Paper



1,000,000 Years
Since Huffman

David A. Huffman

Huffman, 1951

Bounds

Implementation

Variants

Arithmetic Coding

Gallery

Huffman, 1951

I The challenge: find a way of computing a minimum-
redundancy code, given a set of symbol weights. The
previous Shannon-Fano code was not optimal.

I The promise: be exempted from the final examination.

I The find: a week before the exam, gave up, and threw
papers in bin. But then realized that he had developed
an approach that worked.

I The famous paper: Submitted December 1951 (64
years ago), published September 1952.
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Huffman, 1951
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Huffman, 1951

Given: a set of n positive weights, wi .

Compute a set of n corresponding codeword lengths, `i , such
that

∑
i 2−`i ≤ 1 and

∑
i wi · `i is minimal.

Huffman gave us the algorithm. Questions to consider:

I What can be said about `max = maxi `i?

I How to implement the algorithm efficiently?

I How to implement the encoder and decoder?

I What if other constraints get added?

I What about arithmetic coding?
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Huffman’s Algorithm: Example

1 1 1 3 4 4 7 9 91
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Huffman’s Algorithm: Example

1 3 4 4 7 9 9

2

1 1 1
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Huffman’s Algorithm: Example

4 4 7 9 9

22

1 1 1 1 3
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Huffman’s Algorithm: Example

7 9 9

2

4

2

1 1 1 1 3 4 4
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Huffman’s Algorithm: Example

9

72

4

2

1 1 1 1 3 4 4 7 9
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Huffman’s Algorithm: Example

72

4

2

1 1 1 1 3 4 4 7 9 9
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Huffman’s Algorithm: Example

2

4
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Huffman’s Algorithm: Example

4
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Huffman’s Algorithm: Example
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Huffman’s Algorithm: Example
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Huffman’s Algorithm: Example

3
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2317
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Huffman’s Algorithm: Example

3

2

5 5 5 5 4 4 3 2 2

1 1 1 1 3 4 4 7 9 9
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4

1000000 00001 00010 00011 0010 0011 010 011 11
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For an n-symbol alphabet, the codewords can be as long as
n − 1 bits.

But if the weights are frequency counts, to get a codeword
of length `, some number F ′(`) symbols must be present:

3

111

2

F ′(1) = 2, F ′(2) = 3,F ′(3) = 6,F ′(4) = 10,F ′(5) = 17

F ′(k) = F ′(k − 1) + F ′(k − 2) + 1.
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Bounds

For an n-symbol alphabet, the codewords can be as long as
n − 1 bits.

But if the weights are frequency counts, to get a codeword
of length `, some number F ′(`) symbols must be present:

3

111

2

F ′(1) = 2, F ′(2) = 3

,F ′(3) = 6,F ′(4) = 10,F ′(5) = 17

F ′(k) = F ′(k − 1) + F ′(k − 2) + 1.
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Bounds

For an n-symbol alphabet, the codewords can be as long as
n − 1 bits.

But if the weights are frequency counts, to get a codeword
of length `, some number F ′(`) symbols must be present:

3

3111

2

F ′(1) = 2, F ′(2) = 3

,F ′(3) = 6,F ′(4) = 10,F ′(5) = 17

F ′(k) = F ′(k − 1) + F ′(k − 2) + 1.
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Bounds

For an n-symbol alphabet, the codewords can be as long as
n − 1 bits.

But if the weights are frequency counts, to get a codeword
of length `, some number F ′(`) symbols must be present:

6

3111

2 3

F ′(1) = 2, F ′(2) = 3,F ′(3) = 6

,F ′(4) = 10,F ′(5) = 17

F ′(k) = F ′(k − 1) + F ′(k − 2) + 1.
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Bounds

For an n-symbol alphabet, the codewords can be as long as
n − 1 bits.

But if the weights are frequency counts, to get a codeword
of length `, some number F ′(`) symbols must be present:

10

43111

2 3 6

F ′(1) = 2, F ′(2) = 3,F ′(3) = 6,F ′(4) = 10

,F ′(5) = 17

F ′(k) = F ′(k − 1) + F ′(k − 2) + 1.
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Bounds

For an n-symbol alphabet, the codewords can be as long as
n − 1 bits.

But if the weights are frequency counts, to get a codeword
of length `, some number F ′(`) symbols must be present:

17

43111 7

2 3 6 10

F ′(1) = 2, F ′(2) = 3,F ′(3) = 6,F ′(4) = 10,F ′(5) = 17

F ′(k) = F ′(k − 1) + F ′(k − 2) + 1.
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For an n-symbol alphabet, the codewords can be as long as
n − 1 bits.

But if the weights are frequency counts, to get a codeword
of length `, some number F ′(`) symbols must be present:

17

43111 7 11

282 3 6 10

F ′(1) = 2, F ′(2) = 3,F ′(3) = 6,F ′(4) = 10,F ′(5) = 17

F ′(k) = F ′(k − 1) + F ′(k − 2) + 1.
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For an n-symbol alphabet, the codewords can be as long as
n − 1 bits.

But if the weights are frequency counts, to get a codeword
of length `, some number F ′(`) symbols must be present:

17

43111 7 11 18

46282 3 6 10

F ′(1) = 2, F ′(2) = 3,F ′(3) = 6,F ′(4) = 10,F ′(5) = 17

F ′(k) = F ′(k − 1) + F ′(k − 2) + 1.
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Bounds

For an n-symbol alphabet, the codewords can be as long as
n − 1 bits.

But if the weights are frequency counts, to get a codeword
of length `, some number F ′(`) symbols must be present:

17

43111 7 11 18 29

7546282 3 6 10

F ′(1) = 2, F ′(2) = 3,F ′(3) = 6,F ′(4) = 10,F ′(5) = 17

F ′(k) = F ′(k − 1) + F ′(k − 2) + 1.
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For an n-symbol alphabet, the codewords can be as long as
n − 1 bits.

But if the weights are frequency counts, to get a codeword
of length `, some number F ′(`) symbols must be present:

17

43111 7 11 18 29 47

1227546282 3 6 10

F ′(1) = 2, F ′(2) = 3

,F ′(3) = 6,F ′(4) = 10,F ′(5) = 17

F ′(k) = F ′(k − 1) + F ′(k − 2) + 1.
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Bounds

The standard Fibonacci sequence has base cases
F (1) = F (2) = 1, and recursive rule
F (k) = F (k − 1) + F (k − 2); with closed form

F (k) =

⌊
φk√

5
+

1

2

⌋
where φ is the root of x2 − x − 1 = 0, approximately 1.618

Easy to show that F ′(k) = F (k + 2) + F (k)− 1. That is,

F ′(k) ≈ φk+2 + φk√
5

− 1 ≈ φk+1 − 1 .
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Hence, for an N symbol message, the codewords can be at
most (logφN)− 1 ≈ (1.44 log2 N)− 1 bits long.

If p bits of precision are available for frequency counts, then
the codewords can be at most `max ≤ b1.44pc − 1 bits long.
[Katona & Nemetz, 1976; Buro, 1993].

To represent a codeword length requires
dlog2 `maxe ≈ dlog2 p + 0.53e bits. If p = 32, then
`max ≤ 45, and six bits suffice.

If p = 64, then `max ≤ 91 and at most seven bits are needed.
A codeword length will never take more than one byte.
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Implementation (1)

Textbooks describe heap-based methods, building explicit
binary trees with left/right edges labeled with a 0/1.

Encoding: start at the symbol’s leaf, stack up the labels on
the edges on path to root, and emit them in reverse order.

Decoding: start at the root, follow left/right edge for 0/1
bits, emit the corresponding leaf symbol label.

Resources: O(n) space (4n to 6n words) and O(n log n) time
to compute. En/decoding requires bit-by-bit processing.



1,000,000 Years
Since Huffman

David A. Huffman

Huffman, 1951

Bounds

Implementation

Variants

Arithmetic Coding

Gallery

Implementation (2)

If the n input weights are sorted, then at each min-finding
step take the smaller of next leaf, and front item in a queue
of internal nodes that has been formed. New internal nodes
are appended at the end of the same queue when they are
formed.

Resources: O(n) time and O(n) space, once the weights are
sorted [van Leeuwen, 1976].

Pre-sorting takes O(n log n) time, so overall is the same as
heap-based textbook approach.
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Implementation (3)

Input: array A of the n symbol weights wi , sorted so that
A[i ] ≤ A[i + 1].

Output: element A[i ] is now the length `i of the
corresponding i th codeword, with A[i ] ≥ A[i + 1].

Resources: the transformation requires O(n) time and O(1)
further space [Moffat & Katajainen, 1995].

If symbols are not naturally sorted, pre-sort can be done by
Quicksort, and a second array of n words used to store a
permutation vector.



1,000,000 Years
Since Huffman

David A. Huffman

Huffman, 1951

Bounds

Implementation

Variants

Arithmetic Coding

Gallery

Implementation (3)

Pass One: Turn n weights into n − 1 internal node weights
and then n − 2 internal parent pointers.

Pass Two: Turn n − 2 internal parent pointers in to n − 1
internal node depths, using A[i ]← A[A[i ]] + 1.

Pass Three: turn n − 1 internal node depths in to n leaf
depths.
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Implementation (3)

leaf weights

internal weights internal parents
internal depths leaf depths

i

0 1 2 3 4 5 6 7 8 9

P1, start 1 1 1 1 3 4 4 7 9 9
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Implementation (3)

leaf weights internal weights

internal parents
internal depths leaf depths

i

0 1 2 3 4 5 6 7 8 9

P1, start 1 1 1 1 3 4 4 7 9 9

P1, first 2 – 1 1 3 4 4 7 9 9
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Implementation (3)

leaf weights internal weights

internal parents
internal depths leaf depths

i

0 1 2 3 4 5 6 7 8 9

P1, start 1 1 1 1 3 4 4 7 9 9

P1, part 2 2 – – 3 4 4 7 9 9
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Implementation (3)

leaf weights internal weights internal parents

internal depths leaf depths

i

0 1 2 3 4 5 6 7 8 9

P1, start 1 1 1 1 3 4 4 7 9 9

P1, part 2 2 4 – 3 4 4 7 9 9
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Implementation (3)

leaf weights internal weights internal parents

internal depths leaf depths

i

0 1 2 3 4 5 6 7 8 9

P1, start 1 1 1 1 3 4 4 7 9 9

P1, part 2 2 4 7 – – 4 7 9 9
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Implementation (3)

leaf weights internal weights internal parents

internal depths leaf depths

i

0 1 2 3 4 5 6 7 8 9

P1, start 1 1 1 1 3 4 4 7 9 9

P1, part 2 2 4 7 8 – – 7 9 9
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Implementation (3)

leaf weights internal weights internal parents

internal depths leaf depths

i

0 1 2 3 4 5 6 7 8 9

P1, start 1 1 1 1 3 4 4 7 9 9

P1, part 2 2 4 5 8 14 – – 9 9



1,000,000 Years
Since Huffman

David A. Huffman

Huffman, 1951

Bounds

Implementation

Variants

Arithmetic Coding

Gallery

Implementation (3)

leaf weights internal weights internal parents

internal depths leaf depths

i

0 1 2 3 4 5 6 7 8 9

P1, start 1 1 1 1 3 4 4 7 9 9

P1, part 2 2 4 5 6 14 17 – – 9
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Implementation (3)

leaf weights internal weights internal parents

internal depths leaf depths

i

0 1 2 3 4 5 6 7 8 9

P1, start 1 1 1 1 3 4 4 7 9 9

P1, part 2 2 4 5 6 7 17 23 – –
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Implementation (3)

leaf weights internal weights internal parents

internal depths leaf depths

i

0 1 2 3 4 5 6 7 8 9

P1, start 1 1 1 1 3 4 4 7 9 9

P1, done 2 2 4 5 6 7 8 8 40 –
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Implementation (3)

leaf weights internal weights internal parents
internal depths

leaf depths

i

0 1 2 3 4 5 6 7 8 9

P1, start 1 1 1 1 3 4 4 7 9 9

P1, done 2 2 4 5 6 7 8 8 40 –

P2, first 2 2 4 5 6 7 8 8 0 –
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Implementation (3)

leaf weights internal weights internal parents
internal depths

leaf depths

i

0 1 2 3 4 5 6 7 8 9

P1, start 1 1 1 1 3 4 4 7 9 9

P1, done 2 2 4 5 6 7 8 8 40 –

P2, part 2 2 4 5 6 7 8 1 0 –
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Implementation (3)

leaf weights internal weights internal parents
internal depths

leaf depths

i

0 1 2 3 4 5 6 7 8 9

P1, start 1 1 1 1 3 4 4 7 9 9

P1, done 2 2 4 5 6 7 8 8 40 –

P2, part 2 2 4 5 6 7 1 1 0 –
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Implementation (3)

leaf weights internal weights internal parents
internal depths

leaf depths

i

0 1 2 3 4 5 6 7 8 9

P1, start 1 1 1 1 3 4 4 7 9 9

P1, done 2 2 4 5 6 7 8 8 40 –

P2, part 2 2 4 5 6 2 1 1 0 –
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Implementation (3)

leaf weights internal weights internal parents
internal depths

leaf depths

i

0 1 2 3 4 5 6 7 8 9

P1, start 1 1 1 1 3 4 4 7 9 9

P1, done 2 2 4 5 6 7 8 8 40 –

P2, part 2 2 4 5 2 2 1 1 0 –
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Implementation (3)

leaf weights internal weights internal parents
internal depths

leaf depths

i

0 1 2 3 4 5 6 7 8 9

P1, start 1 1 1 1 3 4 4 7 9 9

P1, done 2 2 4 5 6 7 8 8 40 –

P2, done 4 4 3 3 2 2 1 1 0 –
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Implementation (3)

leaf weights internal weights internal parents
internal depths leaf depths

i

0 1 2 3 4 5 6 7 8 9

P1, start 1 1 1 1 3 4 4 7 9 9

P1, done 2 2 4 5 6 7 8 8 40 –

P2, done 4 4 3 3 2 2 1 1 0 –

P3, first 4 4 3 3 – – – – 2 2
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Implementation (3)

leaf weights internal weights internal parents
internal depths leaf depths

i

0 1 2 3 4 5 6 7 8 9

P1, start 1 1 1 1 3 4 4 7 9 9

P1, done 2 2 4 5 6 7 8 8 40 –

P2, done 4 4 3 3 2 2 1 1 0 –

P3, part 4 4 – – – – 3 3 2 2
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Implementation (3)

leaf weights internal weights internal parents
internal depths leaf depths

i

0 1 2 3 4 5 6 7 8 9

P1, start 1 1 1 1 3 4 4 7 9 9

P1, done 2 2 4 5 6 7 8 8 40 –

P2, done 4 4 3 3 2 2 1 1 0 –

P3, part – – – – 4 4 3 3 2 2
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Implementation (3)

leaf weights internal weights internal parents
internal depths leaf depths

i

0 1 2 3 4 5 6 7 8 9

P1, start 1 1 1 1 3 4 4 7 9 9

P1, done 2 2 4 5 6 7 8 8 40 –

P2, done 4 4 3 3 2 2 1 1 0 –

P3, done 5 5 5 5 4 4 3 3 2 2
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Implementation (3)
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Implementation (4)

A different input format: 〈wi , ni 〉, where
∑

i ni = n and∑
i wini = N, and where same-weight symbols are

aggregated. Output is tuples 〈`i , n′i 〉, with
∑

i n
′
i = n.

For the example:

input = 〈1, 4〉, 〈3, 1〉, 〈4, 2〉, 〈7, 1〉, 〈9, 2〉
output = 〈5, 4〉, 〈4, 2〉, 〈3, 2〉, 〈2, 2〉

If there are r distinct symbol weights, can compute Huffman
code in O(r + r log(n/r)) time and space. If r = o(n), then
time is o(n). [Moffat & Turpin, 1998].
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Implementation (5), (6)

If input is sorted weights, and non-overwrite construction is
required, can compute in O(n) time and O(`max) space
[Milidiú, Pessoa & Laber, 2001].

Algorithm is complex, and it isn’t clear that an
implementation will execute quickly.

In recent work, can compute in O(nk) time, where k is
number of distinct codeword lengths [Belal, Elmasry, 2006].

Again, algorithm is complex, and implementation has not
been provided.
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Encoding: Canonical Codes

i `[i ] codeword

0 5 00000

1 5 00001

2 5 00010

3 5 00011

4 4 0010

5 4 0011

6 3 010

7 3 011

8 2 10

9 2 11

` fst[`] base[`]

2 8 2
3 6 2
4 4 2
5 0 0

encode(s):

`s ← `[s]

code← base[`s ] + (s − fst[`s ])

putbits(code, `s)

[Schwartz & Kallick, 1964; Connell, 1973; Zobel & Moffat, 1995].
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Encoding: Canonical Codes

For weight-ordered n symbol alphabet, and an N symbol
message, n(1 + log logN) + O(log2 N) bits; and (making
certain assumptions) O(1) time per symbol coded.

Or, using a linear search in fst, O(log2 N) bits, and O(`s)
time per symbol coded. Or binary search in fst in
O(log(`max − `min)) = O(log logN) time per symbol coded.

If alphabet is not weight-ordered, either add an n log n-bit
permutation vector; or keep ` as an n(1 + log logN)-bit
vector augmented with rank-support, and compute
rank(`, `s) instead of (s − fst[`s ]).
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Decoding: Canonical Codes

i codeword

0 00000

1 00001

2 00010

3 00011

4 0010

5 0011

6 010

7 011

8 10

9 11

` fst[`] base[`] ljb[`]

2 8 2 16
3 6 2 8
4 4 2 4
5 0 0 0

decode():

bits← nextbits(`max)

`s ← min`{ljb[`] ≤ bits < ljb[`− 1]}
s ← fst[`s ] +

(bits− ljb[`s ])� (`max − `s)

shiftbits(`s)

return s
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Decoding: Canonical Codes

i codeword

0 00000

1 00001

2 00010

3 00011

4 0010

5 0011

6 010

7 011

8 10

9 11

` fst[`] base[`] ljb[`]

2 8 2 16
3 6 2 8
4 4 2 4
5 0 0 0

decode():

bits← nextbits(`max)

`s ← min`{ljb[`] ≤ bits < ljb[`− 1]}
s ← fst[`s ] +

(bits− ljb[`s ])� (`max − `s)

shiftbits(`s)

return s
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Decoding: Canonical Codes

For sorted alphabet, requires O(log2 N) bits; search process
can be done by

I linear search in O(`s − `min) (or O(`max − `s)) time

I binary search in O(log logN) time

I table lookup using extra space.

Plus, for non-sorted alphabets, either add select-support to
the n(1 + log logN)-bit vector ` and compute

s ← select(`, `s , (bits− ljb[`s ])� (`max − `s)) ,

or add an n log n-bit inverse permutation vector.
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Decoding Tables

If a table of 2`max entries can be allocated, each
1 + log logN bits, then decoding is O(1) time per symbol.

If further space per entry is used, multiple symbols might be
emitted out of some combinations of the `max bits in bits
[Liddell & Moffat, 2006].

Or, if even that much space is problematic, a smaller table
can accelerate the linear search in ljb, based on a prefix of
bits [Moffat & Turpin, 1997].

bits� 3 00 01 10 11

ls 4+ 3 2 2
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Variants

I Non-binary channel alphabets

I Length-limited codes

I Unequal letter costs

I Dynamic/adaptive codes

I Plus more. . .
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Non-Binary Channel Alphabets

Huffman also described a variant for r -ary alphabets.

Each step replaces r leaves by a single internal node.
[Huffman, 1952].
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Length-Limited Codes

Add constraint that `i ≤ L for some L ≥ dlog2 ne.

The package-merge method has parallels with Huffman’s
algorithm. Requires O(nL) time, and either O(nL) space, or
O(n) space with controlled re-computation [Larmore &

Hirshberg, 1990].

Can be improved to O(n(L− log n)) time and O(L2) space.
[Katajainen, Moffat & Turpin, 1995].

Approximation methods iteratively adjust the weights, using
Huffman’s algorithm until length limit is satisfied [Milidiú &

Laber, 2001].
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Unequal Letter-Costs

Suppose that each symbol of the output alphabet has a
different cost, for example:

I “dots” take c0 = 1 + 1 = 2 units of time

I “dashes” take c1 = 3 + 1 = 4 four units.

Example: “ ”, the maritime SOS message,
costs (6× 2) + (3× 4) = 24 units of time.

Generally: given the cost ci of each of r output symbols,
how to construct a minimal-cost code for the n weights wi?

With discrete codewords: complex! [Bradford et al., 2002].
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Unequal Letter-Costs

(1) Solve for t:

tc0 + tc1 + · · ·+ tcr−1 = 1

Then set pi = tci . Example: for c0 = 2 and c1 = 4,
t ≈ 0.7862; and hence p0 = 0.618 and p1 = 0.382.

(2) Arithmetic encode the source message using the symbol
weights wi to get a stream of equi-probable zeros and ones.

(3) “Decode” that bitstream using the probability
distribution p to get an output stream in which channel
symbol i occurs with probability pi .
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Unequal Letter-Costs

Output symbol i costs ci dollars to transmit; carries
information − log2 pi = −ci log2 t; and hence carries
information at the rate of − log2 t bits per dollar.

Each symbol in the channel alphabet carries information at
the same optimal unit rate.

To decode: “encode” the compressed message using the
probabilities pi to get a bitstream, and then decode that
bitstream using the original weights wi .



1,000,000 Years
Since Huffman

David A. Huffman

Huffman, 1951

Bounds

Implementation

Variants

Arithmetic Coding

Gallery

Dynamic/Adaptive Coding

Several versions, primarily differentiated by how they cater
for novel symbols as they appear, and whether symbol
weights are required to be incrementing integers.

Encoding and decoding, plus code rebuilding costs, O(`s)
time per symbol – linear in total number of output bits.

Several words per symbol required for data structures, and
encoding and decoding are substantially slower than for
static canonical codes.

[Faller, 1973; Gallager, 1978; Cormack & Horspool, 1984; Knuth,

1985; Vitter, 1989].
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Plus More...

I Infinite codes: Golomb, Elias, etc

I Alphabetic restrictions

I Redundancy bounds for each variant

I Use in wavelet trees.
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Arithmetic Coding

Binary arithmetic coding based on relatively early work
[Pasco, 1976; Rissanen, 1976; Rissanen and Langdon, 1979].

Multi-symbol arithmetic coding popularized in 1987 with
publication of a description – and complete C source code –
in CACM [Witten, Neal, & Cleary, 1987]. No ftp service to NZ
at that time!

Faster variants followed, including byte at a time output;
and data structures to support efficient frequency update
and cumulative rank operations [Moffat, 1990; Howard &

Vitter, 1992, 1994; Fenwick, 1994, 1996; Schindler, 1998; Moffat,

Neal, & Witten, 1998; Moffat, 1999].
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Arithmetic Coding

Output length: very close to optimal, that is,
`s ≈ − log2(wi/N), even when N/k < wi < N.

Encoding, decoding: static or dynamic, n words of memory
(that is, n logN bits), and O(`s) time per symbol.

Cake and icing both!
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Huffman Coding vs Arithmetic Coding

[Bookstein & Klein, 1993].
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Huffman Coding vs Arithmetic Coding?

If:

I individual weights are small, wi/N < 1/k, and

I adaptive coding is not required, and

I only one, or a small number of coding contexts are
active at any given time,

then canonical Huffman codes are much faster than
arithmetic codes, and the effectiveness loss is small.
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Huffman Coding vs Arithmetic Coding?

If:

I individual weights are small, wi/N < 1/k, and

I adaptive coding is not required, and

I only one, or a small number of coding contexts are
active at any given time,

then canonical Huffman codes are much faster than
arithmetic codes, and the effectiveness loss is small.
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Huffman Coding vs Arithmetic Coding?

Conversely, use arithmetic coding when

I interleaving symbols from multiple contexts, or

I when model is adaptive, or

I when individual events have high probability.

PPM is the perfect application for arithmetic coding [Cleary

& Witten, 1984; Moffat, 1990; Bunton, 1997].

But gzip, bzip2, xz and etc – “real” compression programs
used millions of times every day – use Huffman coding.

Bottom line: Huffman codes remain important.
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Gallery (Rogues)

Many thanks to students and other collaborators over the
last 25 years:

Andrew Turpin, Anh Ngoc Vo, Ian Witten, Jesper Larsson,
Justin Zobel, Jyrki Katajainen, Lang Stuiver, Linh Huynh,
Mike Liddell, Neil Sharman, Radford Neal, Shane Culpepper,
Timothy C. Bell, Tony Wirth, Yugo Kartona Isal.

And apologies to the many people that I haven’t cited here
in this whirl-wind tour.



1,000,000 Years
Since Huffman

David A. Huffman

Huffman, 1951

Bounds

Implementation

Variants

Arithmetic Coding

Gallery

Snowbird: 1991



1,000,000 Years
Since Huffman

David A. Huffman

Huffman, 1951

Bounds

Implementation

Variants

Arithmetic Coding

Gallery

Snowbird: 1991-2015
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