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David A. Huffman ...

Huffman, 1951

» Engineering at Ohio State University, graduated at 19.

Bounds
» War service in the Pacific with US Navy. Implementation
» Masters in Electrical Engineering at OSU in 1949 as a Variants

Arithmetic Coding

veteran, then to MIT for doctoral studies.

Gallery

» Took “Switching Theory” subject in 1951 while waiting
to re-take doctoral exams.

» Graduated PhD in 1953, The Synthesis of Sequential
Switching Circuits; faculty at MIT 1953-1967; faculty
at UCSC 1967-1994; Chair 1970-1973.

» Awarded IEEE Hamming Medal, 1999.

» Principal body of work in area of flexible surfaces and
folding, including a gallery show.



... And His Famous Paper

1098 PROCEEDINGS OF THE I.R.E.

September

A Method for the Construction of
Minimum-Redundancy Codes”
DAVID A. HUFFMAN{, ASSOCIATE, IRE

Summary—An optimum method of coding an ensemble of mes-

will be defined here as an ensemble code which, for a

sages consisting of a finite number of is developed. A
s code is one in such a way that the
average number of coding digits per message is minimized.

INTRODUCTION

NE IMPORTANT METHOD of transmitting
O messages is to transmit in their place sequences

of symbols. If there are more messages which
might be sent than there are kinds of symbols available,
then some of the messages must use more than one sym-
bol. If it is assumed that each symbol requires the same
time for transmission, then the time for transmission
(length) of a message is directly proportional to the
number of symbols associated with it. In this paper, the
symbol or sequence of symbols associated with a given
message will be called the “message code.” The entire
numher nf maceaose which micht he tranamitted will he

ensemble consisting of a finite number of mem-
bers, N, and for a given number of coding digits, D,
yields the lowest possible average message length. In
order to avoid the use of the lengthy term “minimum-
redundancy,” this term will be replaced here by “opti-
mum.” It will be understood then that, in this paper,
“optimum code” means “minimum-redundancy code.”

The following basic restrictions will be imposed on an

ensemble code:

(a) No two messages will consist of identical arrange-
ments of coding digits.

(b) The message codes will be constructed in such a
way that no additional indication is necessary to
specify where a message code begins and ends
once the starting point of a sequence of messages
is known.
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Huffman, 1951

David A. Huffman

Bounds

» The challenge: find a way of computing a minimum- Il
redundancy code, given a set of symbol weights. The Varlants
previous Shannon-Fano code was not optimal.

Arithmetic Coding

Gallery

» The promise: be exempted from the final examination.

» The find: a week before the exam, gave up, and threw
papers in bin. But then realized that he had developed
an approach that worked.

» The famous paper: Submitted December 1951 (64
years ago), published September 1952.
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David A. Huffman
This newly created ensemble contains oné¢ less mes- S
sage than the original. Its members should be rearranged
if necessary so that the messages are again ordered ac- [T
cording to their probabilities. It may be considered ex- Varlants
actly as the original ensemble was. The codes for each of Arithmetic Coding
the two least probable messages in this new ensemble Gallery

are required to be identical except in their final digits;
0 and 1 are assigned as these digits, one for each of the
two messages. Each new auxiliary ensemble contains
one less message than the preceding ensemble. Each
auxiliary ensemble represents the original ensemble with
full use made of the accumulated necessary coding re-
quirements.

The procedure is applied again and again until the
number of members in the most recently formed auxili-
ary message ensemble is reduced to two. One of each of
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David A. Huffman

TABLE 1
OpriMum BINARY CODING PROCEDURE

Bounds

Message Probabilities Implementation

Original Ausiliary Message Ensembles ) VEIEnES
Mzssnge
Ensemble | 1 2 3 4 5 6 7 8 9 10 11 12
Arithmetic Coding

Gallery
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Huffman, 1951

David A. Huffman

Given: a set of n positive weights, w;. Bounds

Implementation
Compute a set of n corresponding codeword lengths, ¢;, such  Variants
"y . .. : : :
that Zl 2 i S 1 and Z’ w; - gl IS m|n|ma|. Arithmetic Coding

Gallery

Huffman gave us the algorithm. Questions to consider:
» What can be said about /. = max; £;7
» How to implement the algorithm efficiently?
» How to implement the encoder and decoder?
What if other constraints get added?

v

v

What about arithmetic coding?
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Huffman’s Algorithm: Example

David A. Huffman

1 1 1 1 Bounds
\ / \‘ / l Implementation
Variants
\ / Arithmetic Coding
14 Gallery

5 5 5 5 4 4 3 3 2 2
00000 00001 00010 00011 0010 0011 010 011 10 11




David A. Huffman

For an n-symbol alphabet, the codewords can be as long as Huffman, 1951
n — 1 bits.

Implementation

But if the weights are frequency counts, to get a codeword Vit
of length ¢, some number F’(¢) symbols must be present: G (S

Gallery
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David A. Huffman
For an n-symbol alphabet, the codewords can be as long as Huffman, 1951
n — 1 bits.

Implementation

But if the weights are frequency counts, to get a codeword Variants
of length ¢, some number F’(¢) symbols must be present: Arithmetic Coding
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David A. Huffman
For an n-symbol alphabet, the codewords can be as long as Huffman, 1951
n — 1 bits.

Implementation

But if the weights are frequency counts, to get a codeword Vit
of length ¢, some number F’(¢) symbols must be present: G (S
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1 1 1 3 4 7 11 18 29 47

L’iﬂiﬂi» 1i0+ 1i7+2i8+4i6*7i5*1i2

F'(1) =2, F'(2) =3
F'(k) = F'(k—1)+ F'(k—2) + 1.



David A. Huffman

. . Huffman, 1951
The standard Fibonacci sequence has base cases

F(1) = F(2) = 1, and recursive rule
F(k) = F(k — 1) + F(k — 2); with closed form

Implementation
Variants

Arithmetic Coding

AT

where ¢ is the root of x> — x — 1 = 0, approximately 1.618
Easy to show that F/(k) = F(k +2) + F(k) — 1. That is,

B ¢k+2+¢k B

V5

F'(k) 1as gkt —1.



David A. Huffman

Huffman, 1951
Hence, for an N symbol message, the codewords can be at
most (|Og¢ N) - ]_ [ (]_44 |0g2 N) - 1 blts |Ong Implementation
Variants

If p bits of precision are available for frequency counts, then Arithmetic Coding
the codewords can be at most /max < |1.44p| — 1 bits long. el
[Katona & Nemetz, 1976; Buro, 1993].

To represent a codeword length requires
[logy lmax | =~ [logy p + 0.53] bits. If p = 32, then
lmax < 45, and six bits suffice.

If p =64, then {12 < 91 and at most seven bits are needed.

A codeword length will never take more than one byte.



Implementation (1)

David A. Huffman
Huffman, 1951

Bounds

Textbooks describe heap-based methods, building explicit
binary trees with left/right edges labeled with a 0/1.

Variants

Arithmetic Coding

Encoding: start at the symbol’s leaf, stack up the labels on
the edges on path to root, and emit them in reverse order.

Gallery

Decoding: start at the root, follow left/right edge for 0/1
bits, emit the corresponding leaf symbol label.

Resources: O(n) space (4n to 6n words) and O(nlog n) time
to compute. En/decoding requires bit-by-bit processing.



Implementation (2)

David A. Huffman
Huffman, 1951

Bounds

If the n input weights are sorted, then at each min-finding
step take the smaller of next leaf, and front item in a queue
of internal nodes that has been formed. New internal nodes G
are appended at the end of the same queue when they are Gallery
formed.

Variants

Resources: O(n) time and O(n) space, once the weights are
sorted [van Leeuwen, 1976].

Pre-sorting takes O(nlog n) time, so overall is the same as
heap-based textbook approach.



Implementation (3)

David A. Huffman
Huffman, 1951

Input: array A of the n symbol weights w;, sorted so that Hounds

Ali] < Ali +1].

Variants

Arithmetic Coding

Output: element A[i] is now the length ¢; of the
corresponding i th codeword, with A[i] > A[i + 1].

Gallery

Resources: the transformation requires O(n) time and O(1)
further space [Moffat & Katajainen, 1995].

If symbols are not naturally sorted, pre-sort can be done by
Quicksort, and a second array of n words used to store a
permutation vector.



Implementation (3)

David A. Huffman

Huffman, 1951
Bounds

Pass One: Turn n weights into n — 1 internal node weights Variants

and then n — 2 internal parent pointers. Arithmetic Coding
Gallery

Pass Two: Turn n — 2 internal parent pointers in to n —1
internal node depths, using A[i] < A[A[/]] + 1.

Pass Three: turn n — 1 internal node depths in to n leaf
depths.



Implementation (3)

David A. Huffman
Huffman, 1951
Bounds

leaf weights

Variants

Arithmetic Coding

! Gallery
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Huffman, 1951
leaf weights internal weights Founds
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Huffman, 1951
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Implementation (3)

David A. Huffman
Huffman, 1951
leaf weights internal weights internal parents Founds
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Huffman, 1951
leaf weights internal weights internal parents Founds
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Implementation (3)

David A. Huffman
Huffman, 1951
leaf weights internal weights internal parents Founds

Variants

Arithmetic Coding

! Gallery

P1,start 1 1 1 1 3 4 4 7 9 9
Pl,done 2 2 4 5 6 7 8 8 40 -




Implementation (3)

David A. Huffman
Huffman, 1951

Bounds

leaf weights internal weights internal parents
internal depths

Variants

Arithmetic Coding

Gallery
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Huffman, 1951

leaf weights internal weights internal parents Founds
internal depths
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Huffman, 1951

leaf weights internal weights internal parents Founds
internal depths
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Huffman, 1951
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Huffman, 1951
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Implementation (3)

David A. Huffman
Huffman, 1951

Bounds

leaf weights internal weights internal parents
internal depths

Variants

Arithmetic Coding

Gallery
0 1 2 3 4 5 6 7 8 9
P1,start 1 1 1 1 3 4 4 7 9 9
Pl,done 2 2 4 5 6 7 8 8 40 -
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Implementation (3)
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Huffman, 1951

leaf weights internal weights internal parents o
internal depths leaf depths
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Huffman, 1951
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Implementation (3)

David A. Huffman

Huffman, 1951

leaf weights internal weights internal parents o
internal depths leaf depths
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Implementation (3)

David A. Huffman

Huffman, 1951

leaf weights internal weights internal parents o
internal depths leaf depths

Variants

Arithmetic Coding

Gallery
0 1 2 3 4 5 6 7 8 9
P1,start 1 1 1 1 3 4 4 7 9 9
Pl,done 2 2 4 5 6 7 8 8 40 -

P2,done 4 4 3 3 2 2 1 1 0 -

P3,done 5 5 5 5 4 4 3 3 2 2




Implementation (3)

: function calc_huff-lens(A,n) > Input: Ai —1] < A[t] for0<i<n

// Phase 1
set leaf < 0 and root « 0
for nert «— 0 ton—2 do
if leaf > n or (root < next and A[root] < Alleaf]) then

set A[next] — Alroot] and A[root] < next and root «— root + 1 > Use internal node
else

set A[next] — Alleaf] and leaf — leaf + 1 > Use leaf node
end if

repeat steps 4-8, but adding to A[next] rather than assigning to it > Find second child
end for
// Phase 2
set Aln —2] <0
for next — n — 3 downto 0 do
set A[next] — A[A[nezt]] + 1 > Compute depths of internal nodes
end for
// Phase 3
set avail « 1 and used «— 0 and depth < 0 and root < n — 2 and nezt —n—1
while avail > 0 do

while root > 0 and Alroot] = depth do > Count internal nodes used at depth depth
set used < used + 1 and oot < root — 1
end while
while avail > used do > Assign as leaves any nodes that are not internal
set A[nert] — d and next — next — 1 and avail — avail — 1
end while
set avail <+ 2 - used and depth < depth + 1 and used « 0 > Move to next depth
end while
return A > Output: A[] is the length ¢; of the % th codeword

28: end function

David A. Huffman
Huffman, 1951

Bounds

Variants
Arithmetic Coding

Gallery



Implementation (4)

David A. Huffman

Huffman, 1951

A different input format: (w;, n;), where > . n; = n and Hounds
> winj = N, and where same-weight symbols are
aggregated. Output is tuples (¢, n%), with >~ n’ = n.

Variants
Arithmetic Coding

Gallery

For the example:

input = (1,4), (3,1), (4,2),(7,1),(9,2)
output = (5,4), (4,2),(3,2),(2,2)
If there are r distinct symbol weights, can compute Huffman

code in O(r + rlog(n/r)) time and space. If r = o(n), then
time is o(n). [Moffat & Turpin, 1998].



Implementation (5), (6)

If input is sorted weights, and non-overwrite construction is
required, can compute in O(n) time and O(¢max) space
[Milidid, Pessoa & Laber, 2001].

Algorithm is complex, and it isn't clear that an
implementation will execute quickly.

In recent work, can compute in O(nk) time, where k is
number of distinct codeword lengths [Belal, EImasry, 2006].
Again, algorithm is complex, and implementation has not
been provided.

David A. Huffman
Huffman, 1951

Bounds

Variants
Arithmetic Coding

Gallery



Encoding: Canonical Codes

David A. Huffman

Huffman, 1951

i ([i] codeword 1 fst[¢] base[(] Bounds
0 5 00000 2 8 2 s
1 5 00001 3 6 2 Arithmetic Coding
2 5 00010 4 4 2 Gallery
3 5 00011 5 0 0

4 4 0010

5 4 0011

6 3 010

7 3 011

8 2 10

9 2 11




Encoding: Canonical Codes

David A. Huffman

Huffman, 1951

i ([i] codeword 1 fst[¢] base[(] Bounds
0 5 00000 2 8 2 o
1 5 00001 3 6 2 Arithmetic Coding
2 5 00010 4 4 2 Gallery
3 5 00011 5 0 0

4 4 0010

5 4 0011

6 3 010 encode(s):

7 3 o1l ls < {[s]

8 2 10 code < base[ls] + (s — fst[{s])

9 2 11

[Schwartz & Kallick, 1964,

putbits(code, {s)

Connell, 1973; Zobel & Moffat, 1995].



Encoding: Canonical Codes

For weight-ordered n symbol alphabet, and an N symbol
message, n(1 -+ loglog N) + O(log? N) bits; and (making
certain assumptions) O(1) time per symbol coded.

Or, using a linear search in fst, O(log? N) bits, and O(/s)
time per symbol coded. Or binary search in fst in
O(log(£max — min)) = O(loglog N) time per symbol coded.

If alphabet is not weight-ordered, either add an nlog n-bit
permutation vector; or keep £ as an n(1 + log log N)-bit
vector augmented with rank-support, and compute
rank(¢, {s) instead of (s — fst[{]).

David A. Huffman
Huffman, 1951

Bounds

Variants
Arithmetic Coding

Gallery



Decoding: Canonical Codes

David A. Huffman

i codeword 14 fst[l] basell] Ijb[(] s

0 00000 2 8 5 16 _—

1 00001 3 6 ? 8 .

2 00010 4 4 5 4 e
Arithmetic Coding

s oot > 0 0 0 Gallery

4 0010

5 0011

6 010

7 011

8 10

9 11




Decoding: Canonical Codes

David A. Huffman

i codeword ¢ fst[l] base[l] Ib[] S
0 00000 2 8 2 16 e
1 00001 3 6 2 8 |
2 00010 4 4 2 4 e
Arithmetic Coding
3 00011 5 0 0 0 o
4 0010
5 0011
6 010 decode():
7 011 bits < nextbits({max)
8 10 ls + ming{ljb[f] < bits < [jb[¢ — 1]}
9 11 s + fst[ls] +
(bits — 1jb[ls]) > (bmax — ¥s)
shiftbits({s)

return s



Decoding: Canonical Codes

For sorted alphabet, requires O(Iog2 N) bits; search process
can be done by

» linear search in O(¢s — lmin) (or O(£max — ¥s)) time
» binary search in O(loglog N) time

> table lookup using extra space.

Plus, for non-sorted alphabets, either add select-support to
the n(1 + log log N)-bit vector ¢ and compute

s « select(l, Ls, (bits — ljb[ls]) > (bmax — ¥s))

or add an nlog n-bit inverse permutation vector.

David A. Huffman
Huffman, 1951

Bounds

Variants
Arithmetic Coding

Gallery



Decoding Tables

David A. Huffman

If a table of 2fmax entries can be allocated, each Huffman, 1951
1+ loglog N bits, then decoding is O(1) time per symbol. Bounds

If further space per entry is used, multiple symbols might be ~ Verians
emitted out of some combinations of the ¢yax bits in bits Arithmetic Coding
[Liddell & Moffat, 2006].

Gallery

Or, if even that much space is problematic, a smaller table
can accelerate the linear search in [jb, based on a prefix of
bits [Moffat & Turpin, 1997].

bits>3 00 01 10 11
Is 44+ 3 2 2




Variants

>

v

v

v

v

Non-binary channel alphabets
Length-limited codes
Unequal letter costs
Dynamic/adaptive codes

Plus more. ..

David A. Huffman
Huffman, 1951
Bounds

Implementation

Arithmetic Coding

Gallery



Non-Binary Channel Alphabets

David A. Huffman

Huffman also described a variant for r-ary alphabets. e o

TABLE 111 Bounds

OpriMuM CoDING PROCEDURE FOR D =4
Implementation

Message Probabilities
. Arithmetic Coding
Original
Message Auzxiliary Ensembles L(z) Code Gallery
Ensemble
—1.00
—0.40

0.22 0.22 0.22 1 1

0.20 0.20 0.20(— 1 2

0.18 0.18 0.18) 1 3

0.15 0.15 2 00

010  0.10 ‘ 2 01

0.08 0.08(— 2 02

—0.07
0.05} ‘ 3 030
0.02/—! 3 031

Each step replaces r leaves by a single internal node.
[Huffman, 1952].



Length-Limited Codes

David A. Huffman
Huffman, 1951
Add constraint that ¢; < L for some L > [log, n].

Bounds

Implementation

The package-merge method has parallels with Huffman'’s

algorithm. Requires O(nL) time, and either O(nL) space, or AT Gl
O(n) space with controlled re-computation [Larmore & Gallery
Hirshberg, 1990].

Can be improved to O(n(L — log n)) time and O(L?) space.
[Katajainen, Moffat & Turpin, 1995].

Approximation methods iteratively adjust the weights, using
Huffman's algorithm until length limit is satisfied [Milidit &
Laber, 2001].



Unequal Letter-Costs

David A. Huffman

Huffman, 1951

Suppose that each symbol of the output alphabet has a D
different cost, for example: Implementation

» “dots” take cg = 1+ 1 = 2 units of time

Arithmetic Coding

> “dashes” take c; = 3+ 1 = 4 four units.

Gallery

Example: “snwmmmmmmuns” the maritime SOS message,
costs (6 x 2) + (3 x 4) = 24 units of time.

Generally: given the cost ¢; of each of r output symbols,
how to construct a minimal-cost code for the n weights w;?

With discrete codewords: complex! [Bradford et al., 2002].



Unequal Letter-Costs

David A. Huffman
Huffman, 1951
(1) Solve for t: Bounds
Implementation
tO et =1
Arithmetic Coding
Then set p; = t. Example: for ¢cg = 2 and ¢; = 4, Gallery
t =~ 0.7862; and hence pg = 0.618 and p; = 0.382.

(2) Arithmetic encode the source message using the symbol
weights w; to get a stream of equi-probable zeros and ones.

(3) “Decode” that bitstream using the probability
distribution p to get an output stream in which channel
symbol i occurs with probability p;.



Unequal Letter-Costs

David A. Huffman

Huffman, 1951

Bounds
Output symbol i costs ¢; dollars to transmit; carries Implementation
information — log, p; = —cjlog, t; and hence carries
information at the rate of —log, t bits per dollar. oz G
Gallery

Each symbol in the channel alphabet carries information at
the same optimal unit rate.

To decode: “encode” the compressed message using the
probabilities p; to get a bitstream, and then decode that
bitstream using the original weights w;.



Dynamic/Adaptive Coding

David A. Huffman

Huffman, 1951
Several versions, primarily differentiated by how they cater .

for novel symbols as they appear, and whether symbol Implementation
weights are required to be incrementing integers.

Arithmetic Coding

Encoding and decoding, plus code rebuilding costs, O(¥s) Gallery
time per symbol — linear in total number of output bits.

Several words per symbol required for data structures, and
encoding and decoding are substantially slower than for
static canonical codes.

[Faller, 1973; Gallager, 1978; Cormack & Horspool, 1984; Knuth,
1985; Vitter, 1989].



Plus More...

>

v

v

Infinite codes: Golomb, Elias, etc
Alphabetic restrictions
Redundancy bounds for each variant

Use in wavelet trees.

David A. Huffman
Huffman, 1951
Bounds

Implementation

Arithmetic Coding

Gallery



Arithmetic Coding

David A. Huffman

Huffman, 1951
Binary arithmetic coding based on relatively early work S

[Pasco, 1976; Rissanen, 1976; Rissanen and Langdon, 1979]. Implementation
Variants

Multi-symbol arithmetic coding popularized in 1987 with

publication of a description — and complete C source code — Gallery

in CACM [Witten, Neal, & Cleary, 1987]. No ftp service to NZ

at that time!

Faster variants followed, including byte at a time output;
and data structures to support efficient frequency update
and cumulative rank operations [Moffat, 1990; Howard &
Vitter, 1992, 1994; Fenwick, 1994, 1996; Schindler, 1998; Moffat,
Neal, & Witten, 1998; Moffat, 1999].



Arithmetic Coding

David A. Huffman
Huffman, 1951
Bounds
Implementation

Variants

Output length: very close to optimal, that is,
ls ~ —log,(w;j/N), even when N/k < w; < N.

Gallery

Encoding, decoding: static or dynamic, n words of memory
(that is, nlog N bits), and O(¥s) time per symbol.

Cake and icing both!



Huffman Coding vs Arithmetic Coding

Is Huffman Coding Dead?
A. Bookstein! and  S.T. Klein?

1@enter for Information and Language Studies, University of Chicago, Chicago IL 60637, USA
2Dept. of Mathematics and Computer Science, Bar-Ilan University, Ramat Gan 52900, Israel

Recent publications about data compression suggest that Huffman coding is out
of fashion. These publications stress the suboptimality of Huffman codes. Indeed,
the “optimality” of Huffman codes has often been overemphasized in the past and it
is not always mentioned that Huffman codes are optimal only if:

1. the set of elements to be encoded is fixed throughout the file; and
2. each codeword is constructed to consist of an integral number of bits.

Arithmetic codes overcome the above constraints. In fact, these codes have had a
long history, but became especially popular after Witten, Neal and Cleary’s paper in
1987, which claim arithmetic codes are superior in most respects to the better known
Huffman method.

[Bookstein & Klein, 1993].

David A. Huffman
Huffman, 1951
Bounds
Implementation

Variants

Gallery



Huffman Coding vs Arithmetic Coding?

David A. Huffman

Huffman, 1951

Bounds

Implementation
If: Variants

» individual weights are small, w;/N < 1/k, and

Gallery



Huffman Coding vs Arithmetic Coding?

David A. Huffman

Huffman, 1951

Bounds

Implementation
If: Variants

» individual weights are small, w;/N < 1/k, and

. . . . Galler
» adaptive coding is not required, and y



Huffman Coding vs Arithmetic Coding?

David A. Huffman
Huffman, 1951
Bounds
Implementation
If: Variants
» individual weights are small, w;/N < 1/k, and

. . . . Gallery
» adaptive coding is not required, and i

» only one, or a small number of coding contexts are
active at any given time,



Huffman Coding vs Arithmetic Coding?

If:
» individual weights are small, w;/N < 1/k, and
» adaptive coding is not required, and
» only one, or a small number of coding contexts are
active at any given time,
then canonical Huffman codes are much faster than
arithmetic codes, and the effectiveness loss is small.

David A. Huffman
Huffman, 1951
Bounds
Implementation

Variants

Gallery



Huffman Coding vs Arithmetic Coding?

Conversely, use arithmetic coding when
> interleaving symbols from multiple contexts, or
» when model is adaptive, or

» when individual events have high probability.

PPM is the perfect application for arithmetic coding [Cleary
& Witten, 1984; Moffat, 1990; Bunton, 1997].

But gzip, bzip2, xz and etc — “real” compression programs
used millions of times every day — use Huffman coding.

David A. Huffman
Huffman, 1951
Bounds
Implementation

Variants

Gallery



Huffman Coding vs Arithmetic Coding?

David A. Huffman
Huffman, 1951
Conversely, use arithmetic coding when ek

> interleaving symbols from multiple contexts, or mplementation
Variants

» when model is adaptive, or

» when individual events have high probability.

Gallery

PPM is the perfect application for arithmetic coding [Cleary
& Witten, 1984; Moffat, 1990; Bunton, 1997].

But gzip, bzip2, xz and etc — “real” compression programs
used millions of times every day — use Huffman coding.

Bottom line: Huffman codes remain important.



Gallery (Rogues)

David A. Huffman

Huffman, 1951

Bounds
Many thanks to students and other collaborators over the Implementation
last 25 years: Variants

Arithmetic Coding

Andrew Turpin, Anh Ngoc Vo, lan Witten, Jesper Larsson,
Justin Zobel, Jyrki Katajainen, Lang Stuiver, Linh Huynh,
Mike Liddell, Neil Sharman, Radford Neal, Shane Culpepper,
Timothy C. Bell, Tony Wirth, Yugo Kartona lIsal.

And apologies to the many people that | haven't cited here
in this whirl-wind tour.



Snowbird: 1991

David A. Huffman
Huffman, 1951
Bounds
Implementation
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Snowbird: 1991-2015

David A. Huffman

Huffman, 1951

2004

DATA COMPE

Bounds

Implementation

Variants
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