25 Years of the BWT:
The Past and the Future of an
Unusual Compressor

Giovanni Manzini

University of Eastern Piedmont, Alessandria, Italy

Institute of Informatics and Telematics, National Research Councill,
Pisa, Italy

IEEE Data Compression Conference
Snowbird (UT) March 27th, 2019

1994

™

Mandela first
black South
Africa
president

/

May 10, 1994
Research i
SRC Report 124

A Block-sorting Lossless
Data Compression Algorithm

M. Burrows and D.J. Wheeler

dlilglitlall

Systems Research Center
130 Lytton Avenue
Palo Alte, California 94301

1978 (?)

M Space
sl |Nnvaders
released

™~

/

e David Wheeler concelves a data

compression algorithm based on reversible

transformation on the input text, but
considers it too slow for practical use

1994

e Mike Burrows improves the speed of the
compressor. B&W co-author the technical
report describing a “block sorting” lossless
data compression algorithm.

e The algorithm splits the input in blocks and
computes a reversible transformation that
makes the text “more compressible”

e The transformation has been later called the
Burrows-Wheeler transform.

The BWT

[SWiss-miss -missing]

The BWT

[swiSS°miSS°missing]

Consider all rotations
of the input text

S Wwiss-miss-missin
W 1ss-miss-missing
1 ss'miss-missings
S S'miss-missingsw
S ‘miss-missingswi
* MisSsS 'misSsSingswis
m 1SS-missingswiss
1 ss'missingswiss-
S sS'missingswiss-'m
S '‘missingswiss-mi
- missingswiss-mis
issingswiss-miss
SsSingswiss ‘miss-
singswiss-miss-m
ingswiss-miss-mi
Nngswiss-miss-mis
gsSW1isSsS ‘misSsS-miss
SW1SS - 'miss - -missi

QB H0nn k3

nw on k38 g nQ

5 H- 00 8

The BWT

[swiss-miss-missing]

Consider all rotations
of the input text

Sort them in
lexicographic order

* MiSS-mMisSsSingswils S
* mMissSingswiss-mis S

S 00 nnnonons338 H K PHQ

SW1sSsS-'miss - -missi
Nngswiss-miss-mis
sSs'miss-missings
SsS-missingswiss:
sSsingswiss -‘miss-
1ss'missingswiss
1ssSingswiss ‘miss
gSW1isSsS ‘missS-miss
‘miss-missingswi
‘missingswiss-mi
ingswiss-miss-mi
S'miss-missingsw
S'missingswiss-m
singswiss-miss-m
wiss-miss-missin
iss'miss-missing

n

- 833 5 0

nQ kR 00NN R

The BWT

[swiss-miss-missing]

Consider all rotations
of the input text

Sort them In

lexicographic order

Take the last character
of each rotation

[ssnswmm--isssiiigs]

S 0 0 nnn 333 H H H HQ

Mmiss -missSingswis
missSingswiss ‘mis
SW1SS - 'miss - -missi
Nngswiss-miss-mis
sSs'miss-missings
SsS-missingswiss:
sSsingswiss -‘miss-
1ss'missingswiss
1ssSingswiss ‘miss
gSW1isSsS ‘missS-miss
‘miss-missingswi
‘missingswiss-mi
ingswiss-miss-mi
S'miss-missingsw
S'missingswiss-m
singswiss-miss-m
wiss-miss-missin
iss'miss-missing

—

382 n0b 00

QR 00N R

final
char sorted rotations
(L)
a n tc decompress. It achleves compressicon
o n to perform only comparisons to a depth
o n transformation} This section describes
o n transformation} We use the example and
o Il treats the right-hand side as the most
a n tree for each 16 kbyte input block, enc
1 tree in the output stream, then encodes
i n turn, s=t 3L[1i]% to be the
i 1 turn, set SR[1]15 to the
o n unusual data. Like the algorithm of Man
a Il use a single set of probabilitles table
= n using the positions of the suffixes 1n
i n value at a gilven polnt 1in the wvector SR
= n we present modifications that improve t
= n when the block size 1is quite large. Ho
i n which codes that have not been seen 1n
i n with Sch$ appear in the {‘\em same order
i n with schs. In our exam
o n with Huffman or arithmetic coding. Bri
o n with figures gilven by Bell ‘\cite{bell}.

Figure 1: Example of sorted rotations. Twenty consecutive rotations from the
sorted list of rotations of a version of this paper are shown, together with the final
character of each rotation.

e The BWT was computed using a O(n?)
algorithm, fast for non-pathological cases.

¢ The output of the BWT was compressed
using Move-to-front and Huffman/Arithmetic
Coding

e The resulting prototype was superior in
compression and of similar speed wrt gzip

First Harry
S Potter novel
- published

%

e [n 1997 Julian Seward releases the bzip
compression tool based on the BWT.

* |t was highly optimized, and could be used as
a drop-in replacement of gzip, both command
line and library version

o Suffix sorting based on Bentley-Mcllroy
ternary quicksort + tricks O(1) working space,
guadratic time worst case

1997-2000

Research on BWT compression was able to:

e I[mprove compression

e Explain the compression (relate it to known
guantities, such as the entropy)

e I[mprove (de)compression speed, and reduce
working space

First draft
- of Human
~», Genome
~~-¢” Project

‘ completed

/

2000

e First results on compressed indices: the BWT
can replace the Suffix Array for exact off-line

pattern matching.

R. Grossi, J. Vitter. Compressed Suffix Arrays and Suffix Trees with
Applications toText Indexing and String Matching, STOC 00

V. Makinen, Compact Suffix Array, CPM 00
P. Ferragina, G. M. Opportunistic data structures with applications, FOCS 00

What does this mean?

e To efficiently search in a 1GB file it was
necessary to build a full text index of size 5GB

e Now a BWT-compressed file of size ~300MB
was able to store the original text and a full text
iIndex

* An unexpected 16x space reduction!

A happy coincidence

» People was looking for tools to search in the
recently assembled human genome

Traditional full text indices did not fit in RAM

"hanks to the 16x space reduction,
compressed indices did!

» Bowtie [Langmead et al. 09], BWA [Li et al, 09],
SOAP2 [Li et al, 09] are extremely popular
aligner based on a BWT index.

In the meantime...

 Researchers were able to devise compressed
Indices using other compressors (eqg LZ77)

e BWT variants designed only for data
compression met limited success...

e ... while BWT variants for indexing objects
different than texts flourished

e BWT variants were devised to compress and
iIndex Trees, Graphs, Alignments,...

e Thelr common trait Is that they provide a space
efficient solution to an offline matching problem

* \We now have a reasonable idea of why this is
possible

BWT revisited

aabaacbc
abaacbca
baacbcaa
aacbcaab
acbcaaba
cbcaabaa
bcaabaac
caabaach

aabaach
aacbcaa
abaacbc
acbcaab
baacbca
bcaabaa
caabaac
cbcaaba

:SDUOSDSDSDCTO:r

BWT revisited

aabaacbc
abaacbca
baacbcaa
aacbcaab
acbcaaba
cbcaabaa
bcaabaac
caabaach

0O 0O T O 9 o T

abaach
acbcaa
baacbc
cbcaab
aacbca
caabaa
aabaac
bcaaba

:SDUOSDSDSDCTO:r

BWT revisited

aabaacbc
abaacbca
baacbcaa
aacbcaab
acbcaaba
cbcaabaa
bcaabaac
caabaach

0O 0O T O 9 o T

abaach
acbcaa
baacpc
clCaab
aacbca

Gaabaa

aabaac

bcaaba

:SDUOSDSDSDCTO:r

- Last-to-First map Is order preserving!

BWT revisited

aabaacbc
abaacbca
baacbcaa
aacbcaab
acbcaaba
cbcaabaa
bcaabaac
caabaach

0O 0O T O 9 o T

abaachb

SD o0 9 92 Q CT‘O:,—

~ Last-to-First map Iis order preserving!

Introducing Wheeler graphs

abaach
acbcaa
baacbc
cbcaab
aacbca
caabaa
aabaac
bcaaba

0O 0O CcC oo ® ® o
DT O DY YT O

rdered graph, a

O
[node per rotation

to

[Edges according

the LF-map

Edges are order
preserving

[Wheeler Graph!

)
)
)

a

a

a
a

N

aabaacbc

aacbcaab

abaacbca

acbcaaba

baacbhcaa

\

bcaabaac

caabaachb

S

cbcaabaa

N

J

Beyond BWT: Wheeler graph

Directed labeled graph with ordered nodes
X(1) x(2) ... x(n)

Each edge has a label over an alphabet A
X(]) = E(x(i),c) (edge x(i) = x(]) with label c)

(Edge ordering properties: YV i,] A

a E(x(i),a) < E(x(j), b)
x(1) <xQ) = EX(),c) < E(x(),c)
" Y,

A colorful 8-node Wheeler graph

(Nodes are replicated as sources and sinks)

@ @ @ @ ® ® @® ®

labels: bg bgr ¢ gr gr gr

Succinct representation of a Wheeler graph
[Bowe et al '12]
In-degree

unary 1 001 0001 1 001 01 001 001

11T @ @ 4 5 6 (O 8

/ \ [\ , \ // \ //7\ / \\ [\\ [\
Kl/ \\2/ <3/ \\4// \\5/ K6/ \\7// \\8/
labels: bg bgr g gr gr gr

unary 01l 1 01 01 1 Ol 001 001
out-degree

Starting nodes: b-@ ¢g-@ r-@

he standard representation for a graph with n
nodes and m edges takes O(m log n) bits.

Because of their structure, Wheeler graphs
can be represented in O(n+m) bits and still
support constant time navigation.

Many BWT-related succinct indices have a
Wheeler Graph structure. This explains the
“succinct” part

What about indexing?

Searching for substrings >

A B{ C\D R
of ABRACADABRA @D 0 0 0 Q
,/ ;\ 0 0 . 0 0 0 .
We can use a DFA 000000‘
)) 0 0 0 . 0
Simple but not . . ‘ . .
space efficient
O 0 O 0
0 0 &
0 0
6
@

/\

Searching for substrings
of ABRACADABRA

Compacted Trie

More space efficient!

O<>;UW>D>O>;UW

>0 >0

>

@)

O<>;UWJ>U

ADWP>TOT>>NI>0W

>

@)

O<J>;UWJ>UJ>('\

OEDZUW}U

O<J>;UWJ>UJ>('\J>;U

Searching for substrings
of ABRACADABRA

ABRACADABRA

Suffix Tree

“theoretically” \
space efficient

Searching for substrings
of ABRACADABRA

We can use a NFA!

/ Every state initial & final
- Extremely space efficient!

Searching for substrings
of ABRACADABRA

We can use a NFA!

/ Every state initial & final
- Extremely space efficient!

Searching Is a headache

Searching for substrings
of ABRACADABRA

Example:
Searching ABR

=0,

OO O OO OO OO

Searching for substrings
of ABRACADABRA

Example:
Searching ABR

=0,

OO O OO OO OO

SO

O U050 O5@05 0700505

Searching for substrings
of ABRACADABRA

Example:
Searching ABR

Searching for substrings
of ABRACADABRA

Example:
Searching ABR

O OpmOrmO e OO O OamOpmOpmOraO

NFAs made simpler

NFA for BC
ABRACADABRA . C

NFAs made simpler

€
AC
“Naturally” assign B(A
a label to each state RCAB

ABR

2% ABRA
A(ABRAC
DC ABRACA
AC ABRACAD
BCAB RACADA
RCAB RACADAB

ABRACADABR

A
C ABRACADABRA

NFAs made simpler

“Naturally” assign Ale
a label to each state A

Arrange NFA states JABRA
according to labels ABRACADABR

AB RAC'IA [DAB

ABRAC

ABRACAD
A

| ABR

ABRACADABR

Searching in a sorted NFA

Example: \G
Searching ABR [A

ABR AC'.A [DAB
ABRAC
ABRACJAD
A
ABR
ABRACADABR

Searching in a sorted NFA

Example: \G
Searching ABR [A

AB RAC'IA [DAB

ABRAC

ABRACAD
A

| ABR

ABRACADABR

Searching in a sorted NFA

Example: \G
Searching ABR A

ABR AC'.A [DAB

ABRAC

ABRACAD
A

| ABR

ABRACADABR

Searching in a sorted NFA

Example: \G
Searching ABR (A

Two occurrences found! ABRAGADAB
A'\BRAC
A'BRACVIAD
’ ABR
A'\BRACADABR

NFAs made simpler

Easy to search ale
sorted NFA A

AB RAC'IA [DAB

ABRAC

ABRACAD
A

| ABR

ABRACADABR

NFAs made simpler

D A)
€ A
(¢ A
GT A
N 16
: R
No need to store K\ /_’g J
the state labels J
N (9)
NI O

Wheeler Graph!

NFAs made simpler

D A)
(B A)
(c A)
NECHEN
,\ YT ®
Add one arc NENaN Q))
for symmetry & Ji
- L)
a0 -

NFAs made simpler

$
A
/B Z 1 Z
‘b 2y A)
B 6) A)
2 OEEN
NG N
N \ . 1:
Add one arc NEN Q))
for symmetry & Ji
-) b
ABDBCSRRAAAA N R
IS the BWT of)

(ABRACADABRA)F

Summing up

By rearranging the NFA states:

e searching becomes easier

 the NFA becomes an easy to navigate
Wheeler graph

The BWT can be seen as a succinct
representation of the reordered NFA

This trick works for other search problems:
many BWT variants can be seen as
Wheeler graphs obtained by reordering the
states of an appropriate NFA.

2019

™~

UK is leaving
EU (maybe)

/

In 25 years some important issues have been
solved, but they usually lead to more difficult

open guestions

Repetitive collections

e Today we are interested in compressing and
iIndexing large collections of repetitive data

e The plain BWT Index Is not suitable for
repetitive data for the cost of the SA samples

e Using a, so far undetected, property of the BWT
[Gagie et al, 18] made a significant progress
Introducing the r-index. Can we do better?

Space efficient construction

e In 1994 suffix sorting algorithms were either
memory hogs or slow for some inputs

e Many improvements in 25 years: we now have
O(n) time O(n log o) space algorithms, but still
space for improvements

e External memory BWT/LCP computation for
iInputs larger than the available RAM (see
[WABI 18] for some preliminary results)

BWT as a compressor

e Most of the mainstream compressors released
In the last 20 years are based on LZ77 parsing,
eg. LZMA, Snappy, Brotli, Zstd

e LZ77 has more “free parameters” and can offer
a wide range of compression/speed trade-offs

e In BWT compression we cannot easily trade
compression for speed

Sample results (1)

Size Ratio % C.MB/s D.MB/s Compressor (Binary 42% + Text 58%) Silesia.tar
48616057 22.9 1.07 77.11 LzTurbo 49
48758739 23.0 2.47 81.17 lzma 9
49517150 23.4 0.46 336.19

50861542 24.0 1.68 269.97 lzham 4
51720632 24 .4 1.42 1239.95 LzTurbo 39
52715921 24.9 2.03 602.56 zstd 22
54596837 25.8 11.80 38.94 bzip2
58008992 27.4 7.96 853.20 zstd 15
59273940 28.0 59.48 1293.41 LzTurbo 32
59581397 28.1 33.48 416.81

60411647 28.5 45 .64 798.97 zstd 9
60813803 28.7 1.60 2002.86 LzTurbo 29
64141404 30.3 162.02 1372.34 LzTurbo 31
64191258 30.3 65.28 416.81

64711652 30.5 0.22 325.27 zopfli
67624724 31.9 62.86 692.87 lzfse
67647204 31.9 9.99 316.72 zlib 9

Sample results (2)

Size Ratio % C.MB/s D.MB/s Compressor Text log: NASA access_log
11355945 5.5 0.86 320.68 LzTurbo 49
11907661 5.8 0.99 2502.71 LzTurbo 39
11960483 5.8 10.13 67.81 bzip2
12236072 6.0 0.51 1022.47

12617026 6.1 1.36 1348.32 zstd 22
13598062 6.6 2.68 265.69 1zma 9
13651218 6.7 1.33 880.25 1zham 4
14661031 7.1 8.67 1819.99 zstd 15
15041556 7.3 1.13 3732.63 LzTurbo 29
16665926 8.1 78.89 1245.90

17387746 8.5 117.98 1375.73 zstd 9
18279979 8.9 187.64 2186.17 LzTurbo 32
18654669 9.1 173.25 1227.89

19085875 9.3 1.50 3527.36 lizard 49
19545036 9.5 32.75 651.55 zLlib 9

Conclusions

¢ Block sorting was indeed an unusual compressor

¢ The Burrows-Wheeler Transform taught us that
compression should be (almost) free

e Even after 25 years new properties are discovered
and translated to efficient algorithms: r-index,
tunneling, Wheeler graphs, ...

e There Is no lack of challenging problems mainly
coming from NGS analysis

Veli Makinen, Djamal Belazzougui,
Fabio Cunial and Alexandru |. Tomescu

GENOME-SCALE
ALGORITHM
DESIGN il

BIOLOGICAL SEQUENCE ANALYS!
ERA OF HIGH-THROUGHPUT SEQUENCING

References

COMPACT
DATA
_STRUCTURES |

GONZALO
NAVARRO

T. Gagie, G. M, J. Sirén,
Wheeler graphs: A framework
for BWT-based data Structures,
Theoretical Computer Science,
Vol 698 (2017)

Thank You

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	historic example
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65

