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The Natural Video Transmitter

Frames or pictures from
the natural video transmitter

Video from the 
natural video transmitter
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The Natural Image Receiver
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The early visual pathway is largely devoted to “video compression”



Video Quality
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UGC Video Quality is Where its At

• User-generated content (UGC) videos 
dominate social media

• Every day:
– 4 billion videos viewed on Facebook
– 5 billion videos viewed on YouTube

• UGC videos suffer from an extreme diversity
of distortion types and severities

• These often occur in complex combinations 
of distortions creating new distortions.

How many distortions can you find?

Focus blur
Motion blur
Overexposure (saturation)
Underexposure (saturation)
Compression artifacts
Jitter (camera shake)
Low-light noise (sensor)
Color errors
Red-eye
Spatial distortion (stretch)
Combinations of these



8Is this a good quality video?



Plethora of Distortions
“Mostly Spatial”

– Blocking artifacts
– Ringing
– Mosaicking
– False contouring
– Motion blur
– Optical blur
– Additive Noise
– Exposure
– Sensor noise
– Shake
– Color errors

– Many more
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“Mostly Temporal”
– Ghosting
– Motion blocking
– Motion mismatches
– Mosquito noise
– Stutter
– Judder
– Texture Flutter)
– Jerkiness
– Temporal aliasing
– Smearing

– Many more

Decades of “distortion-specific” measurement didn’t work: couldn’t predict perceived quality 
well. Too complex to model, too many distortion variations, too many distortion combinations, 
too hard to map to perception.



UGC Video Quality 
Prediction is Really 

Hard! Can we?
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Yes, because

Videos are Special
and because distortion changes their specialness
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Special Property 1: Reciprocal Law
• The power spectra of videos f(x, t) ~ F(U) = F(U, V) 

and f(x, t) ~ F(W) are pretty reliably modeled:

W, W = (radial) spatial, temporal frequency.

• Generally, a, b  [0.8, 1.5] with aave, bave  1.2

• Functions (1) or (2) are uniquely self-similar:

• Videos are multiscale, and so is perception of them.
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Special Property 2: Bandpass Sparse
• Express video patch f (m) as a linear combination of 

basis functions:

without orthogonality, energy constraints. 

• Find basis {qk(m)} minimizing

where S() = sparsity function like|x|or log(1+x2).

• Solutions yield bandpass, wavelet-like bases.
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Olshausen & Field, Emergence of simple-cell receptive field properties by learning a 
sparse code for natural images, Nature, 1996.
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Special Property 3: Bandpass IC's
• Independent components analysis (ICA)

• Assume {pi} follow separable (independent) distribution:

• Minimize pairwise mutual informations

• Results again look like bandpass, cortical receptive 
fields. Similar on space-time video patches.
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Bell & Sejnowski, The “independent components” of natural  scenes are edge filters, Vision Research, 1997.

van Hateren & Ruderman, Independent component analysis of natural image sequences yields spatio-
temporal filters similar to simple cells in primary visual cortex, Proc. R. Soc. Lond B, 1998.



Bandpass Retino-Cortical Filters
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• Sparse codes and IC’s of pictures and videos resemble bandpass
receptive field profiles of neurons along retino-cortical pathway.

Spatial bandpass predictive coding
by retinal ganglion cells …

Bandpass decompositions
in visual cortex …

… temporal bandpass
coding in LGN …

• Visual neurons “matched” to natural image
structure achieving efficient representations.

• Similar to filters in early layers of deep nets!

space frequency

frequency frequencyspace

time frequency



Special Property 4: GGD Law

• The empirical densities (histograms) of BP-filtered 
videos (luminance) are reliably modeled by 
generalized gaussian densities (GGD) at any 
space/time scale.

• True for wavelets, retino-cortical filters, DCT coeff., 
etc. Shape usually b  1 but varies (0.8 < b < 1.4).
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Mallat, A theory for multiresolution signal decomposition: The wavelet representation,
IEEE Transactions PAMI, 1989.
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Special Property 5: Gaussian Law

• An even more useful model of bandpass videos f is the 
gaussian scale mixture (GSM). If (h = BPF)

then space/time/scale n’brhoods of g(m) are well-modeled

where z(m) is a scalar (variance) random field and

• Implies divisive normalization by local space/time/scale 
energies further decorrelates & gaussianizes.
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Gaussian Scale Mixture
• If                                       it has a multivariate density

• ML estimate of multiplier scalar field from N BP coeff. r:

• Dividing a BP video (patch) by       (or conditioning on) yields 
approximately gaussian white noise.

• The underlying gaussianity of photos and videos is a 
great mystery of vision science / video engineering.

• The vision system expects this property – but distortions 
alter it.
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Normalization of Sensory Neurons
• Sensory neurons are normalized by surrounding energies –

retinal, LGN, and cortical filters.

• Explains contrast masking (for example, of distortion).

• A lot like layer normalization in deep nets but localized.
19

Computational Divisive Normalization
Transform” (DNT) model

Neuronal model

Heeger, Normalization of cell responses in cat striate cortex, Visual Neuroscience, 1992.



Formulating

General Video Quality
Paradigms

by
Exploiting the Dual Nature Between Natural Video 

Statistics and Sensory Processing
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Ideal gaussian
(perfect quality)

Near-gaussian
(high quality)

Distort

Perceptual
Processing

Model

Perceptual
Processing

Model

(Very) General Quality Measurement Concept
After perceptual 
processing (bandpass + 
normalize), quality 
prediction cast as statistical 
distance measurement.

How to define perceptual
quality distances?

Good Quality

Poor Quality



Reference vs. No-Reference
“Reference” VQA: 
• Perceptually 

compare videos 
against "pristine" 
references

• Really measures 
“perceptual 
fidelity”
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Reference
video

Distorted
video

“Reference”
QA algorithm

“No-reference”
QA algorithm

“No-Reference” VQA 
• No reference! 
• Also called Blind

VQA
• Most common UGC

scenario
• Pure perceptual 

quality prediction 

No-reference (blind) VQA (especially of UGC)
is a much harder, much sought-after problem.



No-Reference VQA
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Wireless
Internet

Test
Video

This is what is required for UGC videos:
SSIM, VMAF, etc can’t be used.



BRISQUE
(Blind VQA)
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Statistical Models
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Gaussian Scale Mixture (GSM)
 Bandpass preprocess natural video

 Response well-modeled as

where z = variance / correlation field

 Estimate local variance z and 
normalize / decorrelate:

g( ) z( ) γ( )m m m
( ) η(0, 1)γ m 

normalize

bandpass

Images of the world have an essential UNDERLYING GAUSSIANITY
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Natural Scene Statistic 
Model

Gaussian Property:
If

then
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Decorrelation
Property:
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K0 = modified Bessel function
of the second kind

f( ) vs f( 1)x x MSCN( ) vs MSCN( 1)x x

Small matter
of infinity

Symmetric

MSCN = “mean-subtracted, contrast normalized”:
a basic retinal model



Distortion Statistics
• Distortions destroy gaussianity of

• But most are well-modeled as 
generalized gaussian (GGD)

• Distortions introduce correlations
• Hence product distribution becomes

asymmetric
• Hence use an asymmetric GG model

(μ ≠ 0)
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• When no distortion, expect L = R.
Pairwise product histogram of MSCN

Four distortion
features

Point histogram of MSCNTwo distortion features



BRISQUE Features

• Univariate features: ,  (2 features)

• Product features h, , L, R along four orientations (16 features)

• Over multiple scales (just 2 in basic BRISQUE)

2836 features overall

frame f BRISQUE
feature extraction

G

low-pass
filter

2 BRISQUE
feature extraction

Multiscale BRISQUE
features

down
sample



Training
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Learning 
Machine

(Support Vector 
Regression w/RBF)

(MOS)

LIVE Database
~ 800 distorted images

5 categories of diverse distortions

LIVE Database Labels
~ 25000 human judgments (MOS)



Application
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Trained 
BRISQUE

Test signal f
(distorted or not)

Predicted human
opinion (MOS)

Median linear correlation coefficient against real human opinions,
1000 train-test random divisions of the LIVE Image Quality Database

But this is an old and easy database of 
single, synthetic distortions applied by 
the experimenters (us). BRISQUE does 

not do well on real UGC distortions.
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Comments
• BRISQUE and its derivative "NIQE" (unsupervised 

version) are marketed and used worldwide.

• Example: Quality-controlled transcoding of high-
quality streaming video content in the cloud.

• Performance is poor on real-world user-generated 
content (UGC) – like much YouTube/Facebook content.

• We’ve created "advanced BRISQUE" models having 
dozens to 1000s of NSS features (time, color, scale, 
correlation distance, -field analysis, etc), with some 
success. One is called VIDEVAL.



Deep Blind Video
Quality

32Zhenqiang Ying Mani Mandal



LIVE-Facebook
LSVQ Database

• Collaboration b/w UT-LIVE and Facebook AI 
Research Applications (FAIAR).

• Unique aspects:
– Very large-scale crowdsourced collection of 5,500,000 

human opinions on 40K videos and 120K local video 
patches (almost 10x bigger than any prior study)

– On each video, randomly sampled 3 local video patches (v-
patches)– a spatial (sv) one, a temporal (tv) one, & a spatio-
temporal (stv).

– This will allow exploring relationships b/w global and local 
spatio-temporal quality which are deep, important, and 
little studied.
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LIVE-FB LSVQ Database
Exemplar Patch Sampling
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Exemplar Video Frames 
LIVE-FB LSVQ Database

35



Patch-VQ or PVQ
(Patching Up Video Quality)
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Ying, Mandal, Ghadiyaram, and Bovik, “Patch-VQ: 'Patching Up' the Video  Quality 
Problem,” Arxiv, Nov. 2020; also IEEE CVPR 2021.



PatchVQ (PVQ)

• Feature extractors: "PaQ-2-PiQ" and ResNet 3D
• 4 “RoIs”: full video + 3 v-patches (16 coordinates)
• 4 “SoIs”: full video + 3 v-patches (8 coordinates)
• InceptionTime produces video + patch scores

37

PaQ-2-PiQ is a Resnet-18 
image quality model fine-
tuned on the LIVE-FB
Picture Quality Database

ResNet3D pretrained on
Kinetics-400 (action 

recognition DB)

Ying, Niu, Gupta, Mahajan, Ghadiyaram, Bovik, From patches to pictures (PaQ-2-PiQ), IEEE CVPR 2020.



Time Series of 2D + 3D Deep Features

38



InceptionTime
• A SOTA DL model for time series classification.
• Major building block: Inception module

39Fawaz, et al., “InceptionTime: Finding AlexNet for time series classification,” ArXiv, Sep. 2019.

(K = 1: One output/video) 

Inception modules used in InceptionTime.
The number in each box is the kernel size.

1x1 convolutions reduce (channel) dim 128:32



ROI-Pooling R-CNN

• ROI pooling as introduced in R-CNN (we use “Faster R-
CNN”)

• Simplified since no need for region proposals (ROIs 
always specified).

• Learn on both whole-video and v-patch human labels.

40

Ren, He, Girshick, Sun, Faster R-CNN: “Towards real-time object detection with region proposal 
networks,” Advances in Neural Information Processing Systems, 2015.



SoIPool
• Inspired by TAL-Net* 

– Faster R-CNN (left)  vs. TAL-Net (right)

• Segment-of-interest pooling
– 1D version of RoIPool along time axis
– Use avg-pooling instead of max-pooling

41

*C. Yu-Wei et al., “Rethinking the faster R-CNN architecture for temporal 
action localization,” Computer Vision and Pattern Recognition, 2018.



Training PVQ
• V-patch locations/sizes are always known:

– Training: 4 locations: whole video, sv-patch, tv-patch, 
and stv-patch (from LIVE-FB LSVQ DB)

– PVQ Testing: K = 4 pre-specified locations (whole 
video & any 3 v-patches)

• Quality  prediction of whole videos of any 
size and any number K of v-patches.

• Training: The 160K videos/v-patches were 
divided into

• 72% for training
• 19% for testing
• 9% testing (≥1080p) 42



Testing PatchVQ

• BRISQUE: Widely-used blind IQA 
model. NSS+SVM based.

• VIDEVAL: SOTA non-deep model 
based on fused features.

• VSFA: SOTA deep model. 
Resnet50+GRU (Gated Recurrent 
Units, like LSTM).

43

Model SROCC LCC

BRISQUE .579 .576

VIDEVAL .794 .783

VSFA .801 .796

PatchVQ .827 .828

LIVE-FB LSVQ Database (2020) LIVE VQC Database (2018)

• LIVE VQC is a smaller (585 videos) 
real-world DB – widely used and 
accepted. 

• No additional fine-tuning.
• Shows generalization capability

since trained on LIVE-FB

Model SROCC LCC

BRISQUE .524 .536

VIDEVAL .630 .640

VSFA .734 .772

PatchVQ .770 .807



PVQ Mapper:
Perceptual Quality 

Map Predictor

44



Space-Time Quality 
Maps

• Application of trained PVQ Model to NxMxL video

• Spatial version: Partition frames into 16x16 grid of 
256 spatial patches, each 16 x N/16 x M/16

• Space-time version: Partition video
– into 16-frames clips, calculate quality of each clip.
– partition frames as above

• Produces a 16 x 16 spatial quality map for each 
temporal clip

45



Spatial Quality Map
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Frame Quality Map 1
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Example Quality Map 2
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Space-Time Quality Map
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Space-Time Quality Map

High quality

Low quality

Can you identify the focus changes from the (dips in) temporal quality plot?



Test These Out 
Yourselves!
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Online
DEMO
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LIVE’s Current Sponsors



Questions?


