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Sources of Video Distortion
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The Natural Video Transmitter

Video from the
natural video transmitter

Frames or pictures from
the natural video transmitter 4



The Natural Image Receiver
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The early visual pathway is largely devoted to “video compression”
N



Video Quality



Focus blur
Motion blur

Overexposure (saturation)

Underexposure (saturation)

Compression artifacts

Jitter (camera shake) #

Low-light noise (sensor)

Color errors

Red-eye

Spatial distortion (stretch)
How many distortions can you find? Combinations of these




Is this a good quality video?




Plethora of Distortions

“Mostly Spatial” “Mostly Temporal”
— Blocking artifacts — Ghosting
— Ringing — Motion blocking
— Mosaicking — Motion mismatches
— False contouring — Mosquito noise
— Motion blur — Stutter
— Optical blur — Judder
— Additive Noise — Texture Flutter)
— Exposure — Jerkiness
— Sensor noise — Temporal aliasing
— Shake — Smearing
— Color errors — Many more

— Many more

Decades of “distortion-specific” measurement didn’t work: couldn’t predict perceived quality
well. Too complex to model, too many distortion variations, too many distortion combinations,
too hard to map to perception. 9



UGC Video Quality
Prediction is Really
Hard! Can we?
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Yes, because

Videos are Special

and because distortion changes their specialness
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Special Property 1: Reciprocal Law

 The power spectra of videos f(x, t) ~ F(U) = F(U, V)
and f(x, t) ~ F(W) are pretty reliably modeled:

E F(U)H oc Q7 Q:\/U2 L2 (1)
)

E F(W)H o« W2

Q, W = (radial) spatial, temporal frequency.

* Generally, o, B € [0.8, 1.5] with a ~ 1.2

ave’ B ave

 Functions (1) or (2) are uniquely self-similar:
[F(sU)| oc s |[F(U)|

* Videos are multiscale, and so i1s perception of them.

Tolhurst, et al “Amplitude spectra of natural images,” Ophthal. & Physiol Optics, 1992. 12
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Bandpass Retino-Cortical Filters

* Sparse codes and IC’s of pictures and videos resemble bandpass
receptive field profiles of neurons along retino-cortical pathway.

Parietal Lobe
Frontal Lobe

~
Lateral Geniculate |
-
; R
.
% {

space

il Occipital lobe
TR TN

) . / k
v \

Nucleus (LGN)

Spatial bandpass predictive coding
by retinal ganglion cells ...

‘time frequency
... temporal bandpass

coding in LGN ...

CBK

Bandpass decompositions 15
in visual cortex ...

Cerebellum

Inferior Temporal

Cortex (ITC)

* Visual neurons “matched” to natural image
structure achieving efficient representations.

* Similar to filters in early layers of deep nets!



Snnnia] Pyranavtxr A« (1011 T.QW

— B=0.5
——= B=1
T 0.5 fak 0 |G Ay
!
Vi I
I | \
g‘ 0.4 : 'L‘
SY UG
0.3 1 i
kfr A\
0.2 -
T
e 41 .
[]'[]_ ........ o4 ¥ s
Reinir -3 -2 -1 0 1 2 3
IEEE "~ o, __. X

Mallat, A theory for multiresolution signal decomposition: The wavelet representation,
IEEE Transactions PAMI, 1989.
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Special Property 5: Gaussian Law

 An even more useful model of bandpass videos f 1s the
gaussian scale mixture (GSM). If (h = BPF)

g(m)=1f(m) * h(m)

then space/time/scale n’brhoods of g(lm) are well-modeled
g(m)~z(m)- y(m)

where z(m) 1s a scalar (variance) random field and

Y(m)~n(0, Cy) C; = near-diagonal covariance matrix of y

 Implies divisive normalization by local space/time/scale
energies further decorrelates & gaussianizes.

17
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Normalization of Sensory Neurons

« A lot like layer normalization in deep nets but localized.

Heeger, Normalization of cell responses in cat striate cortex, Visual Neuroscience, 1992. 19



Formulating

General Video Quality

Paradigms
by
Exploiting the Dual Nature Between Natural Video
Statistics and Sensory Processing

20



(Very) General Quality Measurement Concept

After perceptual

Perceptual processing (bandpass +
Processing | | normalize), quality
Model prediction cast as statistical

distance measurement.

Ideal gaussian
/ (perfect quality)

"™\ Near-gaussian

(high quality)

Distort Good Quality

Poor Quality
Perceptual
Processing How to define perceptual
Model quality distances?

21



Reference vs. No-Reference

“Reference” VQA: Dlsjcgrted “No-Reference” VQA

- Perceptually V! _ €0 _ * No reference!
compare videos * Also called Blind
against "pristine" VQA
references * Most common UGC

* Really measures —_— scenario
“perceptual s Pure perceptual
fidelity” quality prediction

hd

“No-reference”
QA algorithm

¥
Quality Estimate

No-reference (blind) VQA (especially of UGC)
is a much harder, much sought-after problem.

22



No-Reference VQA

Wireless
Internet

This 1s what 1s required for UGC videos:
SSIM, VMAF, etc can’t be used.
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BRISQUE

(Blind VQA)
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Statistical Models
Gaussian Scale Mixture (GSM) & M

Bandpass preprocess natural video

Response well-modeled as |
g(m)~z(m)-y(m) —

y(m)~n(0, 1)
where z = variance / correlation field l normalize
STV AN
v .
Estimate local variance z and ' =
normalize / decorrelate: (? : ’

Images of the world have an essential UNDERLYING GAUSSIANITY 75



Natural Scene Statistic
Model

Gaussian Property:

I MseNg) = f(ig)i(f)
then MSCN(x) ~ \/;_ exp(—32 /2) ideo f MSCN :% -MSCN histogram
ic

. MSCN = “mean-subtracted, contrast normalized’:
nx)=> > wy)f(x-y) G(X)Z\/ 2.2, WO[fx-y)-nxy)] a basic retinal model

Decorrelation ,5 | MSCN(x)-MSCN(x£1) ~C, K, (|a)

K, = modified Bessel function
of the second kind

/-\\\
—~ Small matter
of infinity

J L// Symmetric




Distortion Statlstlcs

* Distortions destroy gaussianity of

MSCN(x) = f(zzx)i(i‘)

e But most are well-modeled as
generalized gaussian (GGD)

MSCNdlStorted (X) C eXp (_ ‘a‘ /

 Distortions introduce correlations

 Hence product distribution becomes
asymmetric

« Hence use an asymmetric GG model

@70) =7

4 <()
MSCN(x)- MSCN(x £1) ~C,

exp[—(a/

exp [—(a/

* When no distortion, expect o, = cy.

;a>0
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BRISQUE Features

* Univariate features: y, o (2 features)

* Product features 1, vy, o, oy along four orientations (16 features)

i

* Over multiple scales (just 2 in basic BRISQUE)

frame f—T1T> BRISQUE. >
feature extraction
Multiscale BRISQUE
features
L ¢ =l BRISQUE 5

o feature extraction
low-pass down

filter sample

36 features overall 78



Training

Large database of
pristine and distorted
1mages.

Associated
BRISQUE
teatures.

LIVE Database
~ 800 distorted images
5 categories of diverse distortions

LIVE Database Labels
~ 25000 human judgments (MOS)

m Learning

Associated human Machine

opinion $Cores. (Support Vector
Regression w/RBF)

(MOS)

29



Application

Test signal f : Trained . Predicted human

(distorted or not) BRISQUE opinion (MOS)

 But this 1s an old and easy database of
_ single, synthetic distortions applied by *-
— the experimenters (us). BRISQUE does =
' not do well on real UGC distortions.

Median linear correlation coefficient against real human opinions,
1000 train-test random divisions of the LIVE Image Quality Database
30



Comments

BRISQUE and its derivative "NIQE" (unsupervised
version) are marketed and used worldwide.

Example: Quality-controlled transcoding of high-
quality streaming video content in the cloud.

Performance is poor on real-world user-generated
content (UGC) — like much YouTube/Facebook content.

We've created "advanced BRISQUE" models having

dozens to 1000s of NSS features (time, color, scale,
correlation distance, o-field analysis, etc), with some

success. One 1s called VIDEVAL.

31



Deep Blind Video
Quality

Zhenqiang Ying Mani Mandal

32






LIVE-FB LSVQ Database
Exemplar Patch Sampling

Full video

Spatial Patch

Temporal Patch

Spatio-temporal Patch
stv-patch




Exemplar Video Frames
LIVE-FB LSVQ Database

’,),\‘) .J ¥ A~

—
Early 196




Patch-VQ or PVQ

(Patching Up Video Quality)

Ying, Mandal, Ghadiyaram, and Bovik, “Patch-VQ: 'Patching Up' the Video Quality
Problem,” Arxiv, Nov. 2020; also IEEE CVPR 2021.

36



PaQ-2-PiQ is a Resnet-18 -

; lit del £ FEATURE .
1mage quality model fine- EXTRACTION |
tuned on the LIVE-FB h e e i T
Picture Quality Database : RolPool
SPATIO- :
TEMPORAL .
POOLING '
I SolPool
TIME SERIES | |

PatchVQ (PVQ)

—E=

2D frames

ResNet3D

RolPool

SoIPool

Quality Score

ResNet3D pretrained on
Kinetics-400 (action
recognition DB)

Feature extractors: "PaQ-2-P1Q" and ResNet 3D
4 “Rols”: full video + 3 v-patches (16 coordinates)
4 “Sols”: full video + 3 v-patches (8 coordinates)
InceptionTime produces video + patch scores

Ying, Niu, Gupta, Mahajan, Ghadiyaram, Bovik, From patches to pictures (PaQ-2-PiQ), IEEE CVPR 2020. 37



Time Series of 2D + 3D Deep Features

* The 2D frame features (PaQ-2-PiQ) and 3D clip
features (3D Resnet) form two time series

Xi2D = RM
Xi3D & RM

* Form VQA as a Time Series Regression problem:

X =2 Y where:
« X. =X2P P X3Pe R2M
* Y is its corresponding video labels

38



InceptionTime

« A SOTA DL model for time series classification.
* Major building block: Inception module

channels inputtime

i time Series -~
global fully

o }// GE - ==
\\ f average connected
residual pooling

connections

output (K = 1: One output/video)

=i

’

~
3::::: Inception modules used in InceptionTime.
/ \ The number in each box is the kernel size.
ConviD ConviD ConviD ConviD i ,
10 20 40 1 1x1 convolutions reduce (channel) dim 128:32
\ I / &
Bottleneck (Conv1D) MaxPool1D
1 3
‘\r/ J

Fawaz, et al., “InceptionTime: Finding AlexNet for time series classification,” ArXiv, Sep. 2019. 39



ROI-Pooling R-CNN

« ROI pooling as introduced in R-CNN (we use “Faster R-
CNN”)

 Simplified since no need for region proposals (ROIs
always specified).

 Learn on both whole-video and v-patch human labels.

Ren, He, Girshick, Sun, Faster R-CNN: “Towards real-time object detection with region proposal
networks,” Advances in Neural Information Processing Systems, 2015.

40



SolPool

 Inspired by TAL-Net*
— Faster R-CNN (left) vs. TAL-Net (right)

Dunk Background Dunk
Person  Bike Background DNN Classifier 4 4 4
DNN Classifier 4 4+ 4 |

L] L
& I

@ Sol Pooling
: @ Rol Pooling Segment
Regian Proposals o e
ool V7 et

Segment

Region P |
oAl B Yy PO o < S — T )

E 4 20 convnet AR 4 200r 3D ConvNet

s TEMESH Multiscale ] AT
Multi-scale Input Image : 7 T
— Anchor ‘ , : " . //
SHARLSE Segments 4

Anchor Boxes
Input Frame Sequence

 Segment-of-interest pooling
— 1D version of RoIPool along time axis
— Use avg-pooling instead of max-pooling

*C. Yu-Wei et al., “Rethinking the faster R-CNN architecture for temporal
action localization,” Computer Vision and Pattern Recognition, 2018.



Training PVQ

 V-patch locations/sizes are always known:
— Training: 4 locations: whole video, sv-patch, tv-patch,
and stv-patch (from LIVE-FB LSVQ DB)
— PVQ Testing: K = 4 pre-specified locations (whole
video & any 3 v-patches)

 Quality prediction of whole videos of any
size and any number K of v-patches.

 Training: The 160K videos/v-patches were
divided 1nto

72% for training
19% for testing
* 9% testing (>1080p)

42



LIVE-FB LSVQ Database (2020)

Testing PatchVQ

LIVE VQC Database (2018)

Model SROCC | LCC Model SROCC | LCC
BRISQUE 579 576 BRISQUE 524 .536
VIDEVAL 794 783 VIDEVAL .630 .640
VSFA .801 .796 VSFA 734 172
PatchVQ 827 .828 PatchVQ 170 .807

BRISQUE: Widely-used blind IQA
model. NSS+SVM based.

VIDEVAL: SOTA non-deep model
based on fused features.

VSFA: SOTA deep model.
Resnet50+GRU (Gated Recurrent
Units, like LSTM).

LIVE VQC is a smaller (585 videos)
real-world DB — widely used and
accepted.

No additional fine-tuning.

Shows generalization capability
since trained on LIVE-FB

43



PVQ Mapper:
Perceptual Quality
Map Predictor

44



Space-Time Quality
Maps
Application of trained PVQ Model to NxMxL video

Spatial version: Partition frames into 16x16 grid of
256 spatial patches, each 16 x N/16 x M/16

Space-time version: Partition video
— 1nto 16-frames clips, calculate quality of each clip.

— partition frames as above

Produces a 16 x 16 spatial quality map for each
temporal clip

45



Spatial Quality Map

46






Example Quality Map 2




Space-Time Quality Map
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Space-Time Quality Map
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Can you identify the focus changes from the (dips in) temporal quality plot? 50



Test These Out
Yourselves!

51



LIVE’s Current Sponsors

National Institute of
Standards and Technology
U.S. Department of Commerce

NETFLIX

Video|Clarity|

| I.I.

Tools for Video Analysis

O =1 Yol

oculus £, Facebook Al Research

amazon

=] prime video
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Questions?




