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The world is drowning in data! (Jeff Vitter, 2008)

1

Introduction

The world is drowning in data! In recent years, we have been deluged by
a torrent of data from a variety of increasingly data-intensive applica-
tions, including databases, scientific computations, graphics, entertain-
ment, multimedia, sensors, web applications, and email. NASA’s Earth
Observing System project, the core part of the Earth Science Enterprise
(formerly Mission to Planet Earth), produces petabytes (10 bytes)
of raster data per year [148]. A petabyte corresponds roughly to the
amount of information in one billion graphically formatted books. The
online databases of satellite images used by Microsoft TerraServer (part
of MSN Virtual Earth) and Google Earth [180] are multiple ter-
abytes (10'2 bytes) in size. Wal-Mart’s sales data warehouse contains
over a half petabyte (500 terabytes) of data. A major challenge i to
develop mechanisms for processing the data, or else much of the data
will be useless.
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» Much of the
fastest-growing
data is highly
redundant.

> It carries much
less information
than data.

The 100,000 Genomes Project
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Some numbers

» Two human genomes differ by about 0.1%.
» Typically SNPs, more rarely block edits.

» There are about 20 versions per major release in GitHub.
> Ratio of “commit” over “create”.

» There are about 20 versions per article in Wikipedia.
» And versions grow faster than new articles.

» 100-to-1 compression in Wikipedia and 1000-Genomes
» Using Lempel-Ziv compression.
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We will focus on sequence data, and on the following questions:

» How to best measure the entropy, or amount of
information, of an individual text T[1..n]?

» Can atext T[1..n] be stored in space close to its amount of
information?

» Can we access the text efficiently within that space?
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Kolmogorov’s entropy?

» Kolmogorov’s entropy is
the size of the smallest
program outputting the
text.

> |t would be adequate,
but... it is uncomputable.

» It is also too general, not
just about repetitiveness.

» Ad-hoc measures from
dictionary compression
are used as gold
standards.
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» In 1976, Lempel and Ziv proposed the following measure.

> We start at the beginning of the text T[1..n], i = 0.

» We advance as much as possible, T[i + 1..], as long as
there is a previous occurrence of T[i + 1..].

> If we can advance until T[i + 1..j] (which occurs in T[s..r])
and fail with T[j + 1] then T[i + 1..j + 1] is a phrase.

» We encode the phrase as (r,j — i, T[j + 1]) and continue
fromi=j+ 2.

» The number z of phrases is the Lempel-Ziv complexity.

—
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» Two flavors, actually:

» [f the source must finish before the target starts, z,, [Farach
& Thorup 1995].

> If the source only must start before the source, z (the
original).

> The latter permits self-reference.

» Both left-to-right greedy parsings are optimal, so z < z,,.
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Lempel-Ziv complexity

» Two flavors, actually:
» [f the source must finish before the target starts, z,, [Farach
& Thorup 1995].
> If the source only must start before the source, z (the
original).
» The latter permits self-reference.
» Both left-to-right greedy parsings are optimal, so z < z,,.
» In some families, z,, = Q(zlogn), e.g., T = a".
» The base of practical compressors like LZ77 and LZ78,
with immense success.
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Lempel-Ziv complexity

Good properties
» It converges to Shannon’s entropy on ergodic sources.
» It holds z,, = O(n/ log, n), so space is O(nlog o) bits.

» It can be computed in O(n) time for both z,, [Rodeh, Pratt,
Even 1981] and z [Crochemore et al. 2012].

» It performs very well on repetitive sequences.
> Measure z is taken as a gold standard.

Bad properties
» |t is not robust, e.g., it changes if we reverse T and may
decrease upon appends on T.
» It is not known how to access T[] within O(z,,) space.

> |t may double upon a single character edit on T [Akagi,
Funakoshi, Inenaga 2022].
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Enabling access: LZ-End [Kreft & N. 2013]

» |t requires that the source ends at a phrase boundary.
» This time a greedy parsing does not yield the smallest
parse.
» The optimal parsing produces z.,4 > z,, phrases.
» The greedy parsing produces z. > z.,4 phrases
» z, = 0O(n/log, n)
> z, = O(zlog®(n/z)) [Kempa & Saha 2022]

» The greedy parsing can be computed in O(n) time [Kempa
& Kosolobov 2017].

» Any LZ-End parse enables accessing an individual symbol
in time O(log® n) [Kempa & Saha 2022].

> Z is reasonably close to z in practice.
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Bidirectional macro schemes

» In 1982, Storer and Szymanski proposed a more principled
measure:

» The text is parsed into phrases as in Lempel-Ziv.
» But their sources can be forwards or backwards in T.
»> As long as no cycles are introduced for individual positions.
» Explicit symbols are also permitted.
» The associated measure is b, the least number of phrases
one can achieve.

» Never reached popularity, though.
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Bidirectional macro schemes

Relation with z

» Obviously it holds b < z for every text.
» It holds z = O(blog(n/b)) [N., Ochoa, Prezza 2021].
» By using locally consistent parsing on top of the macro
scheme.
» Such a parsing cuts the text so that identical substrings are
largely parsed in the same way.
» The resulting chunks are processed in successive rounds.
» More detalils later.

» For some families, z = Q(blog n) [Gagie, N., Prezza 2018].
» E.g., Fibonacciwords, F1 = b, Fo = a, Fx = Fx_1Fk_o2.
» b, a, ab, aba, abaab, abaababa, etc.
> The family has b = O(1) and z = ©(log n).
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Bidirectional macro schemes

Good properties
> |t is never worse than z.
» The text can still be encoded within O(blog n) bits.
> |t is more robust, e.g., b is the same if we reverse T.

Bad properties

» Still non-monotonic upon symbol appends [Ferragina &
Tosoni 2021].

> |t may grow by 50% upon a single character edit on T
[Akagi, Funakoshi, Inenaga 2022].

» It is NP-hard to compute b [Gallant 1982].
» No interesting approximations except for z.
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Grammar compression

| 2

| 2

In 2000, Kieffer and Yang proposed to find a small
grammar that generates 7 and only T.

The size g of the smallest such grammar is then a new
measure of compressibility.

The smallest grammar size converges to Shannon’s
entropy too.

Finding the smallest grammar is NP-hard, however
[Charikar et al. 2005].

Not so unpopular because decent heuristics exist, in fact
preceding the formalization:

» [Nakamura & Murashima 1996].

» Byte-Pair Encoding [Manber 1997]

» Sequitur [Nevill-Manning & Witten 1997].

» RePair [Larsson & Moffat 1999].
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The relation between grammars and Lempel-Ziv
» Rytter [2003] and Charikar et al. [2005].
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The relation between grammars and Lempel-Ziv
» Rytter [2003] and Charikar et al. [2005].
» They show that z,, = O(9g).
» By creating a left-to-right parse from the grammar tree.

» The same proof shows that z.,4 < O(g).
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» Rytter [2003] and Charikar et al. [2005].
» They show that z,, = O(9g).
» By creating a left-to-right parse from the grammar tree.

» The same proof shows that z.,4 < O(g).
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The relation between grammars and Lempel-Ziv

» Gawrychowski [2011] proved that g = O(zlog(n/z)) also
holds.
» By extending the previous proof to the self-referential case.
» These imply that the phrase is periodic.
» The periodic string is covered by a grammar of logarithmic
size.
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Accessing T in compressed space
» The grammar, in addition, is binary and balanced.
» That is, its height is O(log n).
» This yields the first access method within space
O(2no log(n/zno))-
> Store the lengths to which nonterminals expand.
» Walk down the grammar tree from the initial symbol
towards the desired position i.

> At the leaf we reach the terminal Ti].
»> We can extract T[i..i + /] in time O(¢ + log n).
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Accessing T in compressed space

» This holds for O(g) space in general.

» Because every grammar can be made binary and

balanced within the same asymptotic size [Ganardi, Jez,
Lohrey 2020].
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The relation between grammars and Lempel-Ziv

» For some families, g = Q(z, log n/ log log n) [Charikar et
al. 2005].

» For example, a“ ba’2ba’sb - - - bae, with ki > k; for all i,
and g = O(log k1).

> Itis parsed into z,, = O(q + log k1) = O(log k1) phrases.

> Its grammar requires size Q(log? ki / log log ki ).
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measure.
» |t obviously holds g, < g.
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Run-length grammars

» They expand grammars by allowing rules A — B~.

» The size g, of the smallest such grammar is another
measure.

» |t obviously holds g, < g.
» In T =a"itholds g, z,, = Q(gy log n).
» In some texts, g, = Q(zno log n/ loglog n) [Bille et al. 2017].

» Thue-Morse sequences, 01, 01 10,0110 1001, ...

» Differential Thue-Morse, +, +=—, +=—+—=+, ...

» In such family, g = g,.

» They combine it with the result of Charikar et al.

» They obtain g, = Q(log® n/ log log n) and z,, = O(log n).

» The same proof shows that g, = Q(zc log n/ log log n).
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More relations with g,

» Gagie, N., and Prezza [2018], corrected in N., Ochoa, and
Prezza [2021].
» They define a locally consistent run-length grammar to
prove gy = O(blog(n/b)).
> It is analyzed by considering an underlying bidirectional

macro sheme.
» They show that new nonterminals are formed near block

boundaries only.
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More relations with g,

» They (easily) prove z = O(g,), thus the bound we already
saw, z = O(blog(n/b)).
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Accessing run-length grammars

» It is unknown if one can balance run-length grammars.

» But Bille et al. [2011] had shown how to provide
logarithmic access time on arbitrary grammars.

» Christiansen et al. [2020] generalized the result to
run-length grammars.

» So one can access any T[i..i + ¢] within O(g,) space in
time O(logn+ ?).
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Collage systems

> |n 2003, Kida et al. invented collage systems.

» Collage systems combine run-length grammars with
composition systems.

» Permit rules of the form A — B* (repetitions).
» Permit rules of the form A — Bl and A 1B (prefix/suffix
truncation).

» The size ¢ < g, of the smallest collage system is another
measure.

» Not known how to find ¢ nor how to approximate it.
» Not much popular.
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Relations with collage systems

N., Ochoa, Prezza [2021] proved b = O(c)
» From run-length grammar trees to collage systems.
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Relations with collage systems
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» From run-length grammar trees to collage systems.
» It chooses leftmost (non-trimmed) node A to be internal
» All other trimmed/non-trimmed occurrences are leaves.
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Relations with collage systems

N., Ochoa, Prezza [2021] proved b = O(c)
» From run-length grammar trees to collage systems.
» It chooses leftmost (non-trimmed) node A to be internal.
> All other trimmed/non-trimmed occurrences are leaves.
> Text positions are ordered by their leaf creation time.
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Relations with collage systems

N., Ochoa, Prezza [2021] proved b = O(c)

» From run-length grammar trees to collage systems.

» It chooses leftmost (non-trimmed) node A to be internal.
> All other trimmed/non-trimmed occurrences are leaves.
> Text positions are ordered by their leaf creation time.

» Then the blocks always point earlier in time.
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Relations with collage systems

N., Ochoa, Prezza [2021] proved ¢ = O(z)
» Let T, be the initial symbol up to phrase i.
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Relations with collage systems

N., Ochoa, Prezza [2021] proved ¢ = O(2)

» Let T, be the initial symbol up to phrase i.

> |f the next phrase is a substring of T;, we extract it with a
prefix and a suffix rule.
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Relations with collage systems

N., Ochoa, Prezza [2021] proved ¢ = O(2)

» Let T, be the initial symbol up to phrase i.

> |f the next phrase is a substring of T;, we extract it with a
prefix and a suffix rule.

» Self-referential phrases are handled with run-length rules.
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Runs in the Burrows-Wheeler Transform (BWT)

» Burrows and Wheeler had invented the BWT for text
compression in 1994,

» It is a permutation of T where we pick the characters
preceding the suffixes of the suffix array.

» It reaches high-order statistical entropy.

» It naturally groups symbols with similar contexts, and tends
to form long runs of equal symbols.
» The number r of those runs is another measure of
compressibility.
» Since the transformation is reversible, we can compress T
in O(r log n) bits.
» For repetitive texts, r is small [Makinen et al. 2008].
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Runs in the Burrows-Wheeler Transform (BWT)

Good properties
» ris related to Shannon’s entropy [Makinen and N. 2005].
» It can be computed in O(n) time.

» Closely related with suffix arrays: efficient pattern matching
is enabled [Ferragina & Manzini 2000; Makinen & N. 2005;

Gagie, N., Prezza 2018].

Bad properties

» Larger in practice than most other measures.
» The value of r depends on the permutation of the alphabet.

» Gap factors of Q(log n) can be obtained.
» NP-hard to find the best permutation [Bentley, Gibney,
Thankachan 2019].

» It is not known how to access T[i] within O(r) space.
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Relating the BWT runs

» Loosely upper bounded, r = O(z log zlog(n/z)) [Kempa &
Kociumaka 2019].

» It can reach r = ©(n), where r = Q(glog n) [Belazzougui et
al. 2015; N. & Prezza 2019].

» On de Bruijn sequences, r = ©(n) and z = O(n/ log n).
» The smallest grammar size is also g = O(n/ log n).
» There are families where z = Q(r log n) [Prezza 2016].
» On Fibonacci strings, z = ©(logn) and r = O(1).
» So r and z are incomparable.
> Yet, it can be proved that b = O(r) [Gagie, N., Prezza
2018].
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Relating the BWT runs

» They use locally consistent parsing again.
» The BWT runs induces a parsing of r phrases on T.

» They use it to build a bidirectional macro scheme of size
b= O(r).
» It has no cycles because the parsing is lexicographic:
» The source is lexicographically smaller than the target.
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Lexicographic parsing

» N., Ochoa, Prezza [2021] define a new measure v < r:

» This is the size of the smallest lexicographic parse.
» They show how to compute v in linear time.

» While z preserves text order, v preserves suffix array order

Good properties (wrt 2)
» Similar compression ratios in many cases.
» Better formal guarantees, e.g. v <.
» Similarly efficient compression/decompression.

Bad properties (wrt 2)
» Only clearly better compression on the Fibonacci words.
> Worse compression on versions with cumulative edits.
» It also varies upon symbol remappings.
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Relations with lexicographic parsing

» They show v = O(n/ log, n), thus r = Q(vlog n) on de
Bruijn sequences.
» It also induces a bidirectional parse, so b = O(v).
» On odd Fibonacci words, it holds b = O(1) and
v = ©(log n).
» Since in some texts z = Q(rlog n), also z = Q(v log n).
» Further, v = O(gy)

» Like the proof of z, choosing the internal grammar tree
nodes as the lexicographically smallest.

» For run-length rules, one chooses A — B - B!~ or
A— B-1.B.

» Unknown if z = o(v) for some text family.



Recap

va



Attractors

» In 2018, Kempa and Prezza invent the concept of attractor.

Relations

alabaralalabardat$

YT=06



Attractors

» In 2018, Kempa and Prezza invent the concept of attractor.
» The first measure designed as a lower bound, not ad-hoc.

Relations

alabaralalabardat$

YT=06



Attractors

» In 2018, Kempa and Prezza invent the concept of attractor.

» The first measure designed as a lower bound, not ad-hoc.
> A set I of positions in T such that any substring of T has a
copy including an element of I'.

Relations

alabaralalabardat$

YT=06



Attractors

» In 2018, Kempa and Prezza invent the concept of attractor.

» The first measure designed as a lower bound, not ad-hoc.

> A set I of positions in T such that any substring of T has a
copy including an element of I'.

» The size v of the smallest attractor is the measure.

Relations

alabaralalabardat$

YT=06



Attractors

» In 2018, Kempa and Prezza invent the concept of attractor.

» The first measure designed as a lower bound, not ad-hoc.

> A set I of positions in T such that any substring of T has a
copy including an element of I'.

» The size v of the smallest attractor is the measure.

» They show that v = O(min(b, c, v, z, Zho, 1, 91, 9))-

Relations

alabaralalabardat$

Y=6



Attractors

» In 2018, Kempa and Prezza invent the concept of attractor.

» The first measure designed as a lower bound, not ad-hoc.

> A set I of positions in T such that any substring of T has a
copy including an element of I'.

» The size v of the smallest attractor is the measure.

» They show that v = O(min(b, c, v, z, Zho, 1, 91, 9))-

Relations
» There is a string family where v+ = O(1) and b = Q(log n)
[Kutsukake et al. 2020, Bannai et al. 2021]
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Attractors

» In 2018, Kempa and Prezza invent the concept of attractor.

» The first measure designed as a lower bound, not ad-hoc.

> A set I of positions in T such that any substring of T has a
copy including an element of I'.

» The size v of the smallest attractor is the measure.

» They show that v = O(min(b, c, v, z, Zho, 1, 91, 9))-

Relations
» There is a string family where v+ = O(1) and b = Q(log n)
[Kutsukake et al. 2020, Bannai et al. 2021]
» Thue-Morse sequences, 01, 01 10, 0110 1001, ...
»> So ~ is not reachable via copy-paste methods.

» Spoiler: Kociumaka thinks he can prove g = O(~ log(n/7)).

alabaralalabardat$

YT=06



Attractors

Good properties
» Elegant definition, no ad-hoc measure.

Bad properties



Attractors
Good properties

» Elegant definition, no ad-hoc measure.
» Lower-bounds all the known reachable measures.

Bad properties



Attractors

Good properties

» Elegant definition, no ad-hoc measure.
» Lower-bounds all the known reachable measures.
» Invariant upon string reversal and symbol mappings.

Bad properties



Attractors

Good properties
» Elegant definition, no ad-hoc measure.
> Lower-bounds all the known reachable measures.
» Invariant upon string reversal and symbol mappings.
» In O(vlog(n/v)) space one can provide access.

Bad properties



Attractors

Good properties

» Elegant definition, no ad-hoc measure.

> Lower-bounds all the known reachable measures.

» Invariant upon string reversal and symbol mappings.
» In O(vlog(n/v)) space one can provide access.

Bad properties
» Non-monotonic upon appends [Mantaci et al. 2021].



Attractors

Good properties
» Elegant definition, no ad-hoc measure.
> Lower-bounds all the known reachable measures.
» Invariant upon string reversal and symbol mappings.
» In O(vlog(n/v)) space one can provide access.

Bad properties

» Non-monotonic upon appends [Mantaci et al. 2021].

» |t may double upon a single character edit on T [Akagi,
Funakoshi, Inenaga 2022].



Attractors

Good properties
» Elegant definition, no ad-hoc measure.
> Lower-bounds all the known reachable measures.
» Invariant upon string reversal and symbol mappings.
» In O(vlog(n/v)) space one can provide access.

Bad properties

» Non-monotonic upon appends [Mantaci et al. 2021].

» |t may double upon a single character edit on T [Akagi,
Funakoshi, Inenaga 2022].

» NP-hard to compute.



Attractors

Good properties
» Elegant definition, no ad-hoc measure.
> Lower-bounds all the known reachable measures.
» Invariant upon string reversal and symbol mappings.
» In O(vlog(n/v)) space one can provide access.

Bad properties
» Non-monotonic upon appends [Mantaci et al. 2021].

» |t may double upon a single character edit on T [Akagi,
Funakoshi, Inenaga 2022].

» NP-hard to compute.
» Unreachable? Can one represent T in O(~) space?



Accessing with attractors

Block-tree-like structure
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» A stricter lower bound [Raskhodnikova et al. 2013]:

0 = max{T(k)/k,k >1}
where T (k) is the number of distinct k-length contexts in T
» It holds § < ~ because T (k) < ~k for every k.

» It can be computed in O(n) time [Christiansen et al. 2020].
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String complexity ¢: the holy grail?
» A stricter lower bound [Raskhodnikova et al. 2013]:
0 = max{T(k)/k,k >1}

where T (k) is the number of distinct k-length contexts in T.
» It holds § < ~ because T (k) < ~k for every k.
» It can be computed in O(n) time [Christiansen et al. 2020].
» Invariant upon reversals and symbol remappings.
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String complexity ¢: the holy grail?
» A stricter lower bound [Raskhodnikova et al. 2013]:
0 = max{T(k)/k,k >1}

where T (k) is the number of distinct k-length contexts in T.
» It holds § < ~ because T (k) < ~k for every k.
» It can be computed in O(n) time [Christiansen et al. 2020].
» Invariant upon reversals and symbol remappings.
» Monotonic upon symbol appends.
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String complexity ¢: the holy grail?
» A stricter lower bound [Raskhodnikova et al. 2013]:
0 = max{T(k)/k,k >1}

where T (k) is the number of distinct k-length contexts in T.
It holds ¢ < ~ because T (k) < ~k for every k.

It can be computed in O(n) time [Christiansen et al. 2020].
Invariant upon reversals and symbol remappings.
Monotonic upon symbol appends.

It grows only by 1 upon a single character edit on T [Akagi,
Funakoshi, Inenaga 2022].
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Relations on §

Some upper bounds in terms of §

» z = 0(dlog(n/9)) [Raskhodnikova et al. 2013], so this is
reachable.

» Block trees can be made of size O(¢dlog(n/0)), so direct
access within that size [Kociumaka, N., Prezza 2020].
» Further, g, = O(d log(n/9)) [Kociumaka, N., Prezza 2021].

» Similar to the proof for g = O(blog(n/b)).
» “Pausing” long symbols to avoid them growing too fast.
» This cannot be achieved with g.

» It also holds r = O(¢ log 0 log(n/0)) [Kociumaka & Kempa
2019] and z. = O(0 log®(n/¢)) [Kempa & Saha 2022].
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Lower bounds in terms of § [Kociumaka, N., Prezza 2020]

» There are string families where v = Q(d log n).
» On T = a” where we put bs at positions 2'.
» b b ab aaab aaaaaaab aaaaaaaaaaaaaaab aa...
» It holds § = O(1) and v = Q(log n).
> |t is impossible to always represent T in O(¢d) space.
» With a wider family where the positions of bs are perturbed.
> The family has 22(°€* ") elements.
> Still 6 = O(1), thus one needs (¢ log n) space.
» Furthermore, space O(0 log(n/d)) is tight.
> For every n and ¢, there are string families requiring that

many bits.
» Using a generalized variant of the above family.



Recap

» z~v~15-25.§
g gz3_66

> r=7-11-9
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Where we are?

> b is the limit of copy-paste representations.

» g, and z,,4 are the (known) limits of efficiently accessible
representations.

> ~ is unreachable via copy-paste, perhaps with other
methods?

» ¢ is unreachable, J log(n/J) is accesible.
» Most measures within § and ¢ log(n/9).
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Where we are?

» Can we represent T in O(~) space?

» Can we access T in O(zy,) or O(r) space?
» Do we have the right repetitiveness measures?
> Is at least ¢ a final lower bound?
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Maybe not...

» lteration of morphisms as a mechanism to capture
repetitions.

» 0 — 01, 1 — 10 generates Thue-Morse words

» 0,01,0110,01101001, ...

» Deterministic Lindenmayer systems are like grammars
without terminals.

» The production is simply terminated at some level of the
derivation tree.

» They are related with repetitiveness

> |f all the rules have right-hand sides of the same length...
» Then the string has v = O(log n) [Shallit 2020].
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v

A deterministic Lindenmayer system.
Plus a desired pruning depth and string length.
Let / be the size of the smallest L-system generating T.
We only have the upper bound ¢ = O(g).
On Thue-Morse words:
> b=0(logn),y=0(1),
»> (= O(1) beats any cut-and-paste method
In some cases, ¢ = Q(J log n) because it is reachable.
But it might also be that § = Q(/log n):

» [nitial symbol 0, rules 0 — 001 and 1 — 1.

» 0,001,0010011, 001001100100111, ...

> It is shown to have § = Q(log n), with £ = O(1).

» Maybe ¢ captures better some repetitive structured texts?



Thanks for your attention!



