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I Two human genomes differ by about 0.1%.

I Typically SNPs, more rarely block edits.
I There are about 20 versions per major release in GitHub.
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I And versions grow faster than new articles.
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We will focus on sequence data, and on the following questions:
I How to best measure the entropy, or amount of

information, of an individual text T [1..n]?

I Can a text T [1..n] be stored in space close to its amount of
information?

I Can we access the text efficiently within that space?
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Lempel-Ziv complexity

I In 1976, Lempel and Ziv proposed the following measure.

I We start at the beginning of the text T [1..n], i = 0.
I We advance as much as possible, T [i + 1..], as long as

there is a previous occurrence of T [i + 1..].
I If we can advance until T [i + 1..j] (which occurs in T [s..r ])

and fail with T [j + 1] then T [i + 1..j + 1] is a phrase.
I We encode the phrase as (r , j − i ,T [j + 1]) and continue

from i = j + 2.
I The number z of phrases is the Lempel-Ziv complexity.
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Lempel-Ziv complexity

I Two flavors, actually:

I If the source must finish before the target starts, zno [Farach
& Thorup 1995].

I If the source only must start before the source, z (the
original).

I The latter permits self-reference.
I Both left-to-right greedy parsings are optimal, so z ≤ zno.
I In some families, zno = Ω(z log n), e.g., T = an.

I The base of practical compressors like LZ77 and LZ78,
with immense success.
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Good properties
I It converges to Shannon’s entropy on ergodic sources.

I It holds zno = O(n/ logσ n), so space is O(n log σ) bits.
I It can be computed in O(n) time for both zno [Rodeh, Pratt,

Even 1981] and z [Crochemore et al. 2012].
I It performs very well on repetitive sequences.
I Measure z is taken as a gold standard.

Bad properties

I It is not robust, e.g., it changes if we reverse T and may
decrease upon appends on T .

I It is not known how to access T [i] within O(zno) space.
I It may double upon a single character edit on T [Akagi,

Funakoshi, Inenaga 2022].



Lempel-Ziv complexity

Good properties
I It converges to Shannon’s entropy on ergodic sources.
I It holds zno = O(n/ logσ n), so space is O(n log σ) bits.

I It can be computed in O(n) time for both zno [Rodeh, Pratt,
Even 1981] and z [Crochemore et al. 2012].

I It performs very well on repetitive sequences.
I Measure z is taken as a gold standard.

Bad properties

I It is not robust, e.g., it changes if we reverse T and may
decrease upon appends on T .

I It is not known how to access T [i] within O(zno) space.
I It may double upon a single character edit on T [Akagi,

Funakoshi, Inenaga 2022].



Lempel-Ziv complexity

Good properties
I It converges to Shannon’s entropy on ergodic sources.
I It holds zno = O(n/ logσ n), so space is O(n log σ) bits.
I It can be computed in O(n) time for both zno [Rodeh, Pratt,

Even 1981] and z [Crochemore et al. 2012].

I It performs very well on repetitive sequences.
I Measure z is taken as a gold standard.

Bad properties

I It is not robust, e.g., it changes if we reverse T and may
decrease upon appends on T .

I It is not known how to access T [i] within O(zno) space.
I It may double upon a single character edit on T [Akagi,

Funakoshi, Inenaga 2022].



Lempel-Ziv complexity

Good properties
I It converges to Shannon’s entropy on ergodic sources.
I It holds zno = O(n/ logσ n), so space is O(n log σ) bits.
I It can be computed in O(n) time for both zno [Rodeh, Pratt,

Even 1981] and z [Crochemore et al. 2012].
I It performs very well on repetitive sequences.

I Measure z is taken as a gold standard.

Bad properties

I It is not robust, e.g., it changes if we reverse T and may
decrease upon appends on T .

I It is not known how to access T [i] within O(zno) space.
I It may double upon a single character edit on T [Akagi,

Funakoshi, Inenaga 2022].



Lempel-Ziv complexity

Good properties
I It converges to Shannon’s entropy on ergodic sources.
I It holds zno = O(n/ logσ n), so space is O(n log σ) bits.
I It can be computed in O(n) time for both zno [Rodeh, Pratt,

Even 1981] and z [Crochemore et al. 2012].
I It performs very well on repetitive sequences.
I Measure z is taken as a gold standard.

Bad properties

I It is not robust, e.g., it changes if we reverse T and may
decrease upon appends on T .

I It is not known how to access T [i] within O(zno) space.
I It may double upon a single character edit on T [Akagi,

Funakoshi, Inenaga 2022].



Lempel-Ziv complexity

Good properties
I It converges to Shannon’s entropy on ergodic sources.
I It holds zno = O(n/ logσ n), so space is O(n log σ) bits.
I It can be computed in O(n) time for both zno [Rodeh, Pratt,

Even 1981] and z [Crochemore et al. 2012].
I It performs very well on repetitive sequences.
I Measure z is taken as a gold standard.

Bad properties

I It is not robust, e.g., it changes if we reverse T and may
decrease upon appends on T .

I It is not known how to access T [i] within O(zno) space.
I It may double upon a single character edit on T [Akagi,

Funakoshi, Inenaga 2022].



Lempel-Ziv complexity

Good properties
I It converges to Shannon’s entropy on ergodic sources.
I It holds zno = O(n/ logσ n), so space is O(n log σ) bits.
I It can be computed in O(n) time for both zno [Rodeh, Pratt,

Even 1981] and z [Crochemore et al. 2012].
I It performs very well on repetitive sequences.
I Measure z is taken as a gold standard.

Bad properties
I It is not robust, e.g., it changes if we reverse T and may

decrease upon appends on T .

I It is not known how to access T [i] within O(zno) space.
I It may double upon a single character edit on T [Akagi,

Funakoshi, Inenaga 2022].



Lempel-Ziv complexity

Good properties
I It converges to Shannon’s entropy on ergodic sources.
I It holds zno = O(n/ logσ n), so space is O(n log σ) bits.
I It can be computed in O(n) time for both zno [Rodeh, Pratt,

Even 1981] and z [Crochemore et al. 2012].
I It performs very well on repetitive sequences.
I Measure z is taken as a gold standard.

Bad properties
I It is not robust, e.g., it changes if we reverse T and may

decrease upon appends on T .
I It is not known how to access T [i] within O(zno) space.

I It may double upon a single character edit on T [Akagi,
Funakoshi, Inenaga 2022].



Lempel-Ziv complexity

Good properties
I It converges to Shannon’s entropy on ergodic sources.
I It holds zno = O(n/ logσ n), so space is O(n log σ) bits.
I It can be computed in O(n) time for both zno [Rodeh, Pratt,

Even 1981] and z [Crochemore et al. 2012].
I It performs very well on repetitive sequences.
I Measure z is taken as a gold standard.

Bad properties
I It is not robust, e.g., it changes if we reverse T and may

decrease upon appends on T .
I It is not known how to access T [i] within O(zno) space.
I It may double upon a single character edit on T [Akagi,

Funakoshi, Inenaga 2022].



Enabling access: LZ-End [Kreft & N. 2013]

I It requires that the source ends at a phrase boundary.

I This time a greedy parsing does not yield the smallest
parse.

I The optimal parsing produces zend ≥ zno phrases.
I The greedy parsing produces ze ≥ zend phrases

I ze = O(n/ logσ n)
I ze = O(z log2(n/z)) [Kempa & Saha 2022]

I The greedy parsing can be computed in O(n) time [Kempa
& Kosolobov 2017].

I Any LZ-End parse enables accessing an individual symbol
in time O(log5 n) [Kempa & Saha 2022].

I ze is reasonably close to z in practice.
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Bidirectional macro schemes

I In 1982, Storer and Szymanski proposed a more principled
measure:

I The text is parsed into phrases as in Lempel-Ziv.
I But their sources can be forwards or backwards in T .
I As long as no cycles are introduced for individual positions.
I Explicit symbols are also permitted.

I The associated measure is b, the least number of phrases
one can achieve.

I Never reached popularity, though.
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Bidirectional macro schemes

Relation with z
I Obviously it holds b ≤ z for every text.

I It holds z = O(b log(n/b)) [N., Ochoa, Prezza 2021].

I By using locally consistent parsing on top of the macro
scheme.

I Such a parsing cuts the text so that identical substrings are
largely parsed in the same way.

I The resulting chunks are processed in successive rounds.
I More details later.

I For some families, z = Ω(b log n) [Gagie, N., Prezza 2018].

I E.g., Fibonacci words, F1 = b, F2 = a, Fk = Fk−1Fk−2.
I b, a, ab, aba, abaab, abaababa, etc.
I The family has b = O(1) and z = Θ(log n).
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Bidirectional macro schemes

Good properties
I It is never worse than z.

I The text can still be encoded within O(b log n) bits.
I It is more robust, e.g., b is the same if we reverse T .

Bad properties

I Still non-monotonic upon symbol appends [Ferragina &
Tosoni 2021].

I It may grow by 50% upon a single character edit on T
[Akagi, Funakoshi, Inenaga 2022].

I It is NP-hard to compute b [Gallant 1982].
I No interesting approximations except for z.
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Grammar compression

I In 2000, Kieffer and Yang proposed to find a small
grammar that generates T and only T .

I The size g of the smallest such grammar is then a new
measure of compressibility.

I The smallest grammar size converges to Shannon’s
entropy too.

I Finding the smallest grammar is NP-hard, however
[Charikar et al. 2005].

I Not so unpopular because decent heuristics exist, in fact
preceding the formalization:

I [Nakamura & Murashima 1996].
I Byte-Pair Encoding [Manber 1997]
I Sequitur [Nevill-Manning & Witten 1997].
I RePair [Larsson & Moffat 1999].
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The relation between grammars and Lempel-Ziv
I Rytter [2003] and Charikar et al. [2005].

I They show that zno = O(g).

I By creating a left-to-right parse from the grammar tree.

I The same proof shows that zend ≤ O(g).
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I Gawrychowski [2011] proved that g = O(z log(n/z)) also
holds.

I By extending the previous proof to the self-referential case.
I These imply that the phrase is periodic.
I The periodic string is covered by a grammar of logarithmic

size.



The relation between grammars and Lempel-Ziv

I Gawrychowski [2011] proved that g = O(z log(n/z)) also
holds.
I By extending the previous proof to the self-referential case.

I These imply that the phrase is periodic.
I The periodic string is covered by a grammar of logarithmic

size.



The relation between grammars and Lempel-Ziv

I Gawrychowski [2011] proved that g = O(z log(n/z)) also
holds.
I By extending the previous proof to the self-referential case.
I These imply that the phrase is periodic.

I The periodic string is covered by a grammar of logarithmic
size.



The relation between grammars and Lempel-Ziv

I Gawrychowski [2011] proved that g = O(z log(n/z)) also
holds.
I By extending the previous proof to the self-referential case.
I These imply that the phrase is periodic.

I The periodic string is covered by a grammar of logarithmic
size.



The relation between grammars and Lempel-Ziv

I Gawrychowski [2011] proved that g = O(z log(n/z)) also
holds.
I By extending the previous proof to the self-referential case.
I These imply that the phrase is periodic.

I The periodic string is covered by a grammar of logarithmic
size.



The relation between grammars and Lempel-Ziv

I Gawrychowski [2011] proved that g = O(z log(n/z)) also
holds.
I By extending the previous proof to the self-referential case.
I These imply that the phrase is periodic.
I The periodic string is covered by a grammar of logarithmic

size.



Accessing T in compressed space
I The grammar, in addition, is binary and balanced.

I That is, its height is O(log n).
I This yields the first access method within space

O(zno log(n/zno)).

I Store the lengths to which nonterminals expand.
I Walk down the grammar tree from the initial symbol

towards the desired position i .
I At the leaf we reach the terminal T [i].
I We can extract T [i ..i + `] in time O(`+ log n).
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The relation between grammars and Lempel-Ziv

I For some families, g = Ω(zno log n/ log log n) [Charikar et
al. 2005].

I For example, ak1bak2bak3b · · · bakq , with k1 ≥ ki for all i ,
and q = Θ(log k1).

I It is parsed into zno = O(q + log k1) = O(log k1) phrases.
I Its grammar requires size Ω(log2 k1/ log log k1).
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Run-length grammars

I They expand grammars by allowing rules A→ Bk .

I The size grl of the smallest such grammar is another
measure.

I It obviously holds grl ≤ g.
I In T = an it holds g, zno = Ω(grl log n).
I In some texts, grl = Ω(zno log n/ log log n) [Bille et al. 2017].

I Thue-Morse sequences, 01, 01 10, 0110 1001, ...
I Differential Thue-Morse, +, +=−, +=−+−=+, ...
I In such family, g = grl .
I They combine it with the result of Charikar et al.
I They obtain grl = Ω(log2 n/ log log n) and zno = O(log n).

I The same proof shows that grl = Ω(ze log n/ log log n).



Run-length grammars

I They expand grammars by allowing rules A→ Bk .
I The size grl of the smallest such grammar is another

measure.

I It obviously holds grl ≤ g.
I In T = an it holds g, zno = Ω(grl log n).
I In some texts, grl = Ω(zno log n/ log log n) [Bille et al. 2017].

I Thue-Morse sequences, 01, 01 10, 0110 1001, ...
I Differential Thue-Morse, +, +=−, +=−+−=+, ...
I In such family, g = grl .
I They combine it with the result of Charikar et al.
I They obtain grl = Ω(log2 n/ log log n) and zno = O(log n).

I The same proof shows that grl = Ω(ze log n/ log log n).



Run-length grammars

I They expand grammars by allowing rules A→ Bk .
I The size grl of the smallest such grammar is another

measure.
I It obviously holds grl ≤ g.

I In T = an it holds g, zno = Ω(grl log n).
I In some texts, grl = Ω(zno log n/ log log n) [Bille et al. 2017].

I Thue-Morse sequences, 01, 01 10, 0110 1001, ...
I Differential Thue-Morse, +, +=−, +=−+−=+, ...
I In such family, g = grl .
I They combine it with the result of Charikar et al.
I They obtain grl = Ω(log2 n/ log log n) and zno = O(log n).

I The same proof shows that grl = Ω(ze log n/ log log n).



Run-length grammars

I They expand grammars by allowing rules A→ Bk .
I The size grl of the smallest such grammar is another

measure.
I It obviously holds grl ≤ g.
I In T = an it holds g, zno = Ω(grl log n).

I In some texts, grl = Ω(zno log n/ log log n) [Bille et al. 2017].

I Thue-Morse sequences, 01, 01 10, 0110 1001, ...
I Differential Thue-Morse, +, +=−, +=−+−=+, ...
I In such family, g = grl .
I They combine it with the result of Charikar et al.
I They obtain grl = Ω(log2 n/ log log n) and zno = O(log n).

I The same proof shows that grl = Ω(ze log n/ log log n).



Run-length grammars

I They expand grammars by allowing rules A→ Bk .
I The size grl of the smallest such grammar is another

measure.
I It obviously holds grl ≤ g.
I In T = an it holds g, zno = Ω(grl log n).
I In some texts, grl = Ω(zno log n/ log log n) [Bille et al. 2017].

I Thue-Morse sequences, 01, 01 10, 0110 1001, ...
I Differential Thue-Morse, +, +=−, +=−+−=+, ...
I In such family, g = grl .
I They combine it with the result of Charikar et al.
I They obtain grl = Ω(log2 n/ log log n) and zno = O(log n).

I The same proof shows that grl = Ω(ze log n/ log log n).



Run-length grammars

I They expand grammars by allowing rules A→ Bk .
I The size grl of the smallest such grammar is another

measure.
I It obviously holds grl ≤ g.
I In T = an it holds g, zno = Ω(grl log n).
I In some texts, grl = Ω(zno log n/ log log n) [Bille et al. 2017].

I Thue-Morse sequences, 01, 01 10, 0110 1001, ...

I Differential Thue-Morse, +, +=−, +=−+−=+, ...
I In such family, g = grl .
I They combine it with the result of Charikar et al.
I They obtain grl = Ω(log2 n/ log log n) and zno = O(log n).

I The same proof shows that grl = Ω(ze log n/ log log n).



Run-length grammars

I They expand grammars by allowing rules A→ Bk .
I The size grl of the smallest such grammar is another

measure.
I It obviously holds grl ≤ g.
I In T = an it holds g, zno = Ω(grl log n).
I In some texts, grl = Ω(zno log n/ log log n) [Bille et al. 2017].

I Thue-Morse sequences, 01, 01 10, 0110 1001, ...
I Differential Thue-Morse, +, +=−, +=−+−=+, ...

I In such family, g = grl .
I They combine it with the result of Charikar et al.
I They obtain grl = Ω(log2 n/ log log n) and zno = O(log n).

I The same proof shows that grl = Ω(ze log n/ log log n).



Run-length grammars

I They expand grammars by allowing rules A→ Bk .
I The size grl of the smallest such grammar is another

measure.
I It obviously holds grl ≤ g.
I In T = an it holds g, zno = Ω(grl log n).
I In some texts, grl = Ω(zno log n/ log log n) [Bille et al. 2017].

I Thue-Morse sequences, 01, 01 10, 0110 1001, ...
I Differential Thue-Morse, +, +=−, +=−+−=+, ...
I In such family, g = grl .

I They combine it with the result of Charikar et al.
I They obtain grl = Ω(log2 n/ log log n) and zno = O(log n).

I The same proof shows that grl = Ω(ze log n/ log log n).



Run-length grammars

I They expand grammars by allowing rules A→ Bk .
I The size grl of the smallest such grammar is another

measure.
I It obviously holds grl ≤ g.
I In T = an it holds g, zno = Ω(grl log n).
I In some texts, grl = Ω(zno log n/ log log n) [Bille et al. 2017].

I Thue-Morse sequences, 01, 01 10, 0110 1001, ...
I Differential Thue-Morse, +, +=−, +=−+−=+, ...
I In such family, g = grl .
I They combine it with the result of Charikar et al.

I They obtain grl = Ω(log2 n/ log log n) and zno = O(log n).
I The same proof shows that grl = Ω(ze log n/ log log n).



Run-length grammars

I They expand grammars by allowing rules A→ Bk .
I The size grl of the smallest such grammar is another

measure.
I It obviously holds grl ≤ g.
I In T = an it holds g, zno = Ω(grl log n).
I In some texts, grl = Ω(zno log n/ log log n) [Bille et al. 2017].

I Thue-Morse sequences, 01, 01 10, 0110 1001, ...
I Differential Thue-Morse, +, +=−, +=−+−=+, ...
I In such family, g = grl .
I They combine it with the result of Charikar et al.
I They obtain grl = Ω(log2 n/ log log n) and zno = O(log n).

I The same proof shows that grl = Ω(ze log n/ log log n).



Run-length grammars

I They expand grammars by allowing rules A→ Bk .
I The size grl of the smallest such grammar is another

measure.
I It obviously holds grl ≤ g.
I In T = an it holds g, zno = Ω(grl log n).
I In some texts, grl = Ω(zno log n/ log log n) [Bille et al. 2017].

I Thue-Morse sequences, 01, 01 10, 0110 1001, ...
I Differential Thue-Morse, +, +=−, +=−+−=+, ...
I In such family, g = grl .
I They combine it with the result of Charikar et al.
I They obtain grl = Ω(log2 n/ log log n) and zno = O(log n).

I The same proof shows that grl = Ω(ze log n/ log log n).



More relations with grl

I Gagie, N., and Prezza [2018], corrected in N., Ochoa, and
Prezza [2021].

I They define a locally consistent run-length grammar to
prove grl = O(b log(n/b)).

I It is analyzed by considering an underlying bidirectional
macro sheme.

I They show that new nonterminals are formed near block
boundaries only.



More relations with grl

I Gagie, N., and Prezza [2018], corrected in N., Ochoa, and
Prezza [2021].

I They define a locally consistent run-length grammar to
prove grl = O(b log(n/b)).

I It is analyzed by considering an underlying bidirectional
macro sheme.

I They show that new nonterminals are formed near block
boundaries only.



More relations with grl

I Gagie, N., and Prezza [2018], corrected in N., Ochoa, and
Prezza [2021].

I They define a locally consistent run-length grammar to
prove grl = O(b log(n/b)).
I It is analyzed by considering an underlying bidirectional

macro sheme.

I They show that new nonterminals are formed near block
boundaries only.



More relations with grl

I Gagie, N., and Prezza [2018], corrected in N., Ochoa, and
Prezza [2021].

I They define a locally consistent run-length grammar to
prove grl = O(b log(n/b)).
I It is analyzed by considering an underlying bidirectional

macro sheme.
I They show that new nonterminals are formed near block

boundaries only.



More relations with grl

I Gagie, N., and Prezza [2018], corrected in N., Ochoa, and
Prezza [2021].

I They define a locally consistent run-length grammar to
prove grl = O(b log(n/b)).
I It is analyzed by considering an underlying bidirectional

macro sheme.
I They show that new nonterminals are formed near block

boundaries only.

l b raa a l a a b a r d a $a

A B

 

 

C A

l

A B C D



More relations with grl

I Gagie, N., and Prezza [2018], corrected in N., Ochoa, and
Prezza [2021].

I They define a locally consistent run-length grammar to
prove grl = O(b log(n/b)).
I It is analyzed by considering an underlying bidirectional

macro sheme.
I They show that new nonterminals are formed near block

boundaries only.

l b raa a l a a b a r d a $a

A B

 

 

E F

l

A DCBA

E

C

A
2



More relations with grl

I They (easily) prove z = O(grl), thus the bound we already
saw, z = O(b log(n/b)).
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Accessing run-length grammars

I It is unknown if one can balance run-length grammars.

I But Bille et al. [2011] had shown how to provide
logarithmic access time on arbitrary grammars.

I Christiansen et al. [2020] generalized the result to
run-length grammars.

I So one can access any T [i ..i + `] within O(grl) space in
time O(log n + `).
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Collage systems

I In 2003, Kida et al. invented collage systems.

I Collage systems combine run-length grammars with
composition systems.

I Permit rules of the form A→ Bk (repetitions).
I Permit rules of the form A→ B[t] and A→[t]B (prefix/suffix

truncation).

I The size c ≤ grl of the smallest collage system is another
measure.

I Not known how to find c nor how to approximate it.
I Not much popular.
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Relations with collage systems
N., Ochoa, Prezza [2021] proved b = O(c)
I From run-length grammar trees to collage systems.

I It chooses leftmost (non-trimmed) node A to be internal.
I All other trimmed/non-trimmed occurrences are leaves.
I Text positions are ordered by their leaf creation time.
I Then the blocks always point earlier in time.
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Relations with collage systems

N., Ochoa, Prezza [2021] proved c = O(z)
I Let Ti be the initial symbol up to phrase i .

I If the next phrase is a substring of Ti , we extract it with a
prefix and a suffix rule.

I Self-referential phrases are handled with run-length rules.
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Runs in the Burrows-Wheeler Transform (BWT)

I Burrows and Wheeler had invented the BWT for text
compression in 1994.

I It is a permutation of T where we pick the characters
preceding the suffixes of the suffix array.

I It reaches high-order statistical entropy.
I It naturally groups symbols with similar contexts, and tends

to form long runs of equal symbols.
I The number r of those runs is another measure of

compressibility.

I Since the transformation is reversible, we can compress T
in O(r log n) bits.

I For repetitive texts, r is small [Mäkinen et al. 2008].
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Runs in the Burrows-Wheeler Transform (BWT)
aa l b raa a l a a b a r dl$

da a l b raa a l a a b a rl$

la b a r a l a l a b a r a a$d

la b a r a a l b raa a l a$d

a l b raa a l a a b a r d al $

la l a b a r a a l b raa a$d

ra l a l a b a r a a l b aa$d

ba r a l a l a b a r a a l a$d

ba r a a l b raa a l a al$d

ab a r a l a l a b a r a a l$d

ab a r a a l b raa a l a l$d

ra a l b raa a l a a b al$d

l a b a r a l a l a b a r a a$d

al a b a r a a l b raa a l$d

al a l a b a r a a l b raa$d

ar a l a l a b a r a a l ba$d

ar a a l b raa a l a a bl$d

r =10
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Good properties
I r is related to Shannon’s entropy [Mäkinen and N. 2005].

I It can be computed in O(n) time.
I Closely related with suffix arrays: efficient pattern matching

is enabled [Ferragina & Manzini 2000; Mäkinen & N. 2005;
Gagie, N., Prezza 2018].

Bad properties

I Larger in practice than most other measures.
I The value of r depends on the permutation of the alphabet.

I Gap factors of Ω(log n) can be obtained.
I NP-hard to find the best permutation [Bentley, Gibney,

Thankachan 2019].

I It is not known how to access T [i] within O(r) space.
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Relating the BWT runs

I Loosely upper bounded, r = O(z log z log(n/z)) [Kempa &
Kociumaka 2019].

I It can reach r = Θ(n), where r = Ω(g log n) [Belazzougui et
al. 2015; N. & Prezza 2019].
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I They use locally consistent parsing again.

I The BWT runs induces a parsing of r phrases on T .
I They use it to build a bidirectional macro scheme of size

b = O(r).
I It has no cycles because the parsing is lexicographic:

I The source is lexicographically smaller than the target.
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Lexicographic parsing

I N., Ochoa, Prezza [2021] define a new measure v ≤ r :

I This is the size of the smallest lexicographic parse.
I They show how to compute v in linear time.

I While z preserves text order, v preserves suffix array order

Good properties (wrt z)

I Similar compression ratios in many cases.
I Better formal guarantees, e.g. v ≤ r .
I Similarly efficient compression/decompression.

Bad properties (wrt z)

I Only clearly better compression on the Fibonacci words.
I Worse compression on versions with cumulative edits.
I It also varies upon symbol remappings.
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Relations with lexicographic parsing

I They show v = O(n/ logσ n), thus r = Ω(v log n) on de
Bruijn sequences.

I It also induces a bidirectional parse, so b = O(v).
I On odd Fibonacci words, it holds b = O(1) and

v = Θ(log n).
I Since in some texts z = Ω(r log n), also z = Ω(v log n).
I Further, v = O(grl)

I Like the proof of z, choosing the internal grammar tree
nodes as the lexicographically smallest.

I For run-length rules, one chooses A→ B · Bt−1 or
A→ Bt−1 · B.

I Unknown if z = o(v) for some text family.
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Attractors
I In 2018, Kempa and Prezza invent the concept of attractor.

I The first measure designed as a lower bound, not ad-hoc.
I A set Γ of positions in T such that any substring of T has a

copy including an element of Γ.
I The size γ of the smallest attractor is the measure.

I They show that γ = O(min(b, c, v , z, zno, r ,grl ,g)).

Relations

I There is a string family where γ = O(1) and b = Ω(log n)
[Kutsukake et al. 2020, Bannai et al. 2021]

I Thue-Morse sequences, 01, 01 10, 0110 1001, ...
I So γ is not reachable via copy-paste methods.

I Spoiler: Kociumaka thinks he can prove g = O(γ log(n/γ)).

a l b raa a l a a b a r d a $l
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Attractors

Good properties
I Elegant definition, no ad-hoc measure.

I Lower-bounds all the known reachable measures.
I Invariant upon string reversal and symbol mappings.
I In O(γ log(n/γ)) space one can provide access.

Bad properties

I Non-monotonic upon appends [Mantaci et al. 2021].
I It may double upon a single character edit on T [Akagi,

Funakoshi, Inenaga 2022].
I NP-hard to compute.
I Unreachable? Can one represent T in O(γ) space?
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Accessing with attractors

Block-tree-like structure

a l b raa a l a l b a r d aa



String complexity δ: the holy grail?
I A stricter lower bound [Raskhodnikova et al. 2013]:

δ = max{T (k)/k , k ≥ 1}

where T (k) is the number of distinct k -length contexts in T .

I It holds δ ≤ γ because T (k) ≤ γk for every k .
I It can be computed in O(n) time [Christiansen et al. 2020].
I Invariant upon reversals and symbol remappings.
I Monotonic upon symbol appends.
I It grows only by 1 upon a single character edit on T [Akagi,

Funakoshi, Inenaga 2022].

a l b raa a l a a b a r d a $l
T(1)/1 = 6

T(3)/3 = 3.3

T(2)/2 = 4.5
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Relations on δ

Some upper bounds in terms of δ
I z = O(δ log(n/δ)) [Raskhodnikova et al. 2013], so this is

reachable.

I Block trees can be made of size O(δ log(n/δ)), so direct
access within that size [Kociumaka, N., Prezza 2020].

I Further, grl = O(δ log(n/δ)) [Kociumaka, N., Prezza 2021].

I Similar to the proof for g = O(b log(n/b)).
I “Pausing” long symbols to avoid them growing too fast.
I This cannot be achieved with g.

I It also holds r = O(δ log δ log(n/δ)) [Kociumaka & Kempa
2019] and ze = O(δ log2(n/δ)) [Kempa & Saha 2022].
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More relations on δ

Lower bounds in terms of δ [Kociumaka, N., Prezza 2020]
I There are string families where γ = Ω(δ log n).

I On T = an where we put bs at positions 2i .
I b b ab aaab aaaaaaab aaaaaaaaaaaaaaab aa...
I It holds δ = O(1) and γ = Ω(log n).

I It is impossible to always represent T in O(δ) space.

I With a wider family where the positions of bs are perturbed.
I The family has 2Ω(log2 n) elements.
I Still δ = O(1), thus one needs Ω(δ log n) space.

I Furthermore, space O(δ log(n/δ)) is tight.

I For every n and δ, there are string families requiring that
many bits.

I Using a generalized variant of the above family.
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I z ≈ v ≈ 1.5–2.5 · δ
I g ≈ 3–6 · δ
I r ≈ 7–11 · δ
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methods?
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Where we are?

I Can we represent T in O(γ) space?

I Can we access T in O(zno) or O(r) space?
I Do we have the right repetitiveness measures?

I Is at least δ a final lower bound?
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Maybe not...

I Iteration of morphisms as a mechanism to capture
repetitions.

I 0→ 01, 1→ 10 generates Thue-Morse words
I 0, 01, 0110, 01101001, ...
I Deterministic Lindenmayer systems are like grammars

without terminals.
I The production is simply terminated at some level of the

derivation tree.
I They are related with repetitiveness

I If all the rules have right-hand sides of the same length...
I Then the string has γ = O(log n) [Shallit 2020].
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L-systems [N. & Urbina, 2021]

I A deterministic Lindenmayer system.

I Plus a desired pruning depth and string length.
I Let ` be the size of the smallest L-system generating T .
I We only have the upper bound ` = O(g).
I On Thue-Morse words:

I b = Θ(log n), γ = O(1),
I ` = O(1) beats any cut-and-paste method

I In some cases, ` = Ω(δ log n) because it is reachable.
I But it might also be that δ = Ω(` log n):

I Initial symbol 0, rules 0→ 001 and 1→ 1.
I 0, 001, 0010011, 001001100100111, ...
I It is shown to have δ = Ω(log n), with ` = O(1).
I Maybe ` captures better some repetitive structured texts?
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Thanks for your attention!


