
On the Compressibility of
Highly Repetitive Sequences

Gonzalo Navarro

CeBiB — Center for Biotechnology and Bioengineering
IMFD — Millennium Institute for Foundational

Research on Data
Department of Computer Science, University of Chile

The world is drowning in data! (Jeff Vitter, 2008)

I We are still drowning in data, but...
I ... are we drowning in information?

The world is drowning in data! (Jeff Vitter, 2008)

I We are still drowning in data, but...

I ... are we drowning in information?

The world is drowning in data! (Jeff Vitter, 2008)

I We are still drowning in data, but...
I ... are we drowning in information?

Are we drowning in information?

I Much of the
fastest-growing
data is highly
redundant.

I It carries much
less information
than data.

Are we drowning in information?

I Much of the
fastest-growing
data is highly
redundant.

I It carries much
less information
than data.

Are we drowning in information?

I Much of the
fastest-growing
data is highly
redundant.

I It carries much
less information
than data.

I Myriad genomes
of the same
species.

Are we drowning in information?

I Much of the
fastest-growing
data is highly
redundant.

I It carries much
less information
than data.

I Periodic sky
surveys.

Are we drowning in information?

I Much of the
fastest-growing
data is highly
redundant.

I It carries much
less information
than data.

I Time-versioned
collections.

Are we drowning in information?

I Much of the
fastest-growing
data is highly
redundant.

I It carries much
less information
than data.

I Tree-versioned
collections.

Some numbers

I Two human genomes differ by about 0.1%.

I Typically SNPs, more rarely block edits.
I There are about 20 versions per major release in GitHub.

I Ratio of “commit” over “create”.

I There are about 20 versions per article in Wikipedia.

I And versions grow faster than new articles.

I 100-to-1 compression in Wikipedia and 1000-Genomes

I Using Lempel-Ziv compression.

Some numbers

I Two human genomes differ by about 0.1%.
I Typically SNPs, more rarely block edits.

I There are about 20 versions per major release in GitHub.

I Ratio of “commit” over “create”.

I There are about 20 versions per article in Wikipedia.

I And versions grow faster than new articles.

I 100-to-1 compression in Wikipedia and 1000-Genomes

I Using Lempel-Ziv compression.

Some numbers

I Two human genomes differ by about 0.1%.
I Typically SNPs, more rarely block edits.

I There are about 20 versions per major release in GitHub.

I Ratio of “commit” over “create”.
I There are about 20 versions per article in Wikipedia.

I And versions grow faster than new articles.

I 100-to-1 compression in Wikipedia and 1000-Genomes

I Using Lempel-Ziv compression.

Some numbers

I Two human genomes differ by about 0.1%.
I Typically SNPs, more rarely block edits.

I There are about 20 versions per major release in GitHub.
I Ratio of “commit” over “create”.

I There are about 20 versions per article in Wikipedia.

I And versions grow faster than new articles.

I 100-to-1 compression in Wikipedia and 1000-Genomes

I Using Lempel-Ziv compression.

Some numbers

I Two human genomes differ by about 0.1%.
I Typically SNPs, more rarely block edits.

I There are about 20 versions per major release in GitHub.
I Ratio of “commit” over “create”.

I There are about 20 versions per article in Wikipedia.

I And versions grow faster than new articles.
I 100-to-1 compression in Wikipedia and 1000-Genomes

I Using Lempel-Ziv compression.

Some numbers

I Two human genomes differ by about 0.1%.
I Typically SNPs, more rarely block edits.

I There are about 20 versions per major release in GitHub.
I Ratio of “commit” over “create”.

I There are about 20 versions per article in Wikipedia.
I And versions grow faster than new articles.

I 100-to-1 compression in Wikipedia and 1000-Genomes

I Using Lempel-Ziv compression.

Some numbers

I Two human genomes differ by about 0.1%.
I Typically SNPs, more rarely block edits.

I There are about 20 versions per major release in GitHub.
I Ratio of “commit” over “create”.

I There are about 20 versions per article in Wikipedia.
I And versions grow faster than new articles.

I 100-to-1 compression in Wikipedia and 1000-Genomes

I Using Lempel-Ziv compression.

Some numbers

I Two human genomes differ by about 0.1%.
I Typically SNPs, more rarely block edits.

I There are about 20 versions per major release in GitHub.
I Ratio of “commit” over “create”.

I There are about 20 versions per article in Wikipedia.
I And versions grow faster than new articles.

I 100-to-1 compression in Wikipedia and 1000-Genomes
I Using Lempel-Ziv compression.

Our focus

We will focus on sequence data, and on the following questions:
I How to best measure the entropy, or amount of

information, of an individual text T [1..n]?

I Can a text T [1..n] be stored in space close to its amount of
information?

I Can we access the text efficiently within that space?

Our focus

We will focus on sequence data, and on the following questions:
I How to best measure the entropy, or amount of

information, of an individual text T [1..n]?
I Can a text T [1..n] be stored in space close to its amount of

information?

I Can we access the text efficiently within that space?

Our focus

We will focus on sequence data, and on the following questions:
I How to best measure the entropy, or amount of

information, of an individual text T [1..n]?
I Can a text T [1..n] be stored in space close to its amount of

information?
I Can we access the text efficiently within that space?

Shannon’s entropy?

I Shannon’s entropy has
been immensely
successful to measure
amount of information
depending on
frequencies.

I But it is useless to
capture repetitiveness,
H(T · T) ≈ H(T).

Shannon’s entropy?

I Shannon’s entropy has
been immensely
successful to measure
amount of information
depending on
frequencies.

I But it is useless to
capture repetitiveness,
H(T · T) ≈ H(T).

Kolmogorov’s entropy?

I Kolmogorov’s entropy is
the size of the smallest
program outputting the
text.

I It would be adequate,
but... it is uncomputable.

I It is also too general, not
just about repetitiveness.

I Ad-hoc measures from
dictionary compression
are used as gold
standards.

Kolmogorov’s entropy?

I Kolmogorov’s entropy is
the size of the smallest
program outputting the
text.

I It would be adequate,
but... it is uncomputable.

I It is also too general, not
just about repetitiveness.

I Ad-hoc measures from
dictionary compression
are used as gold
standards.

Kolmogorov’s entropy?

I Kolmogorov’s entropy is
the size of the smallest
program outputting the
text.

I It would be adequate,
but... it is uncomputable.

I It is also too general, not
just about repetitiveness.

I Ad-hoc measures from
dictionary compression
are used as gold
standards.

Kolmogorov’s entropy?

I Kolmogorov’s entropy is
the size of the smallest
program outputting the
text.

I It would be adequate,
but... it is uncomputable.

I It is also too general, not
just about repetitiveness.

I Ad-hoc measures from
dictionary compression
are used as gold
standards.

Lempel-Ziv complexity

I In 1976, Lempel and Ziv proposed the following measure.

I We start at the beginning of the text T [1..n], i = 0.
I We advance as much as possible, T [i + 1..], as long as

there is a previous occurrence of T [i + 1..].
I If we can advance until T [i + 1..j] (which occurs in T [s..r])

and fail with T [j + 1] then T [i + 1..j + 1] is a phrase.
I We encode the phrase as (r , j − i ,T [j + 1]) and continue

from i = j + 2.
I The number z of phrases is the Lempel-Ziv complexity.

Lempel-Ziv complexity

I In 1976, Lempel and Ziv proposed the following measure.
I We start at the beginning of the text T [1..n], i = 0.

I We advance as much as possible, T [i + 1..], as long as
there is a previous occurrence of T [i + 1..].

I If we can advance until T [i + 1..j] (which occurs in T [s..r])
and fail with T [j + 1] then T [i + 1..j + 1] is a phrase.

I We encode the phrase as (r , j − i ,T [j + 1]) and continue
from i = j + 2.

I The number z of phrases is the Lempel-Ziv complexity.

Lempel-Ziv complexity

I In 1976, Lempel and Ziv proposed the following measure.
I We start at the beginning of the text T [1..n], i = 0.
I We advance as much as possible, T [i + 1..], as long as

there is a previous occurrence of T [i + 1..].

I If we can advance until T [i + 1..j] (which occurs in T [s..r])
and fail with T [j + 1] then T [i + 1..j + 1] is a phrase.

I We encode the phrase as (r , j − i ,T [j + 1]) and continue
from i = j + 2.

I The number z of phrases is the Lempel-Ziv complexity.

Lempel-Ziv complexity

I In 1976, Lempel and Ziv proposed the following measure.
I We start at the beginning of the text T [1..n], i = 0.
I We advance as much as possible, T [i + 1..], as long as

there is a previous occurrence of T [i + 1..].
I If we can advance until T [i + 1..j] (which occurs in T [s..r])

and fail with T [j + 1] then T [i + 1..j + 1] is a phrase.

I We encode the phrase as (r , j − i ,T [j + 1]) and continue
from i = j + 2.

I The number z of phrases is the Lempel-Ziv complexity.

Lempel-Ziv complexity

I In 1976, Lempel and Ziv proposed the following measure.
I We start at the beginning of the text T [1..n], i = 0.
I We advance as much as possible, T [i + 1..], as long as

there is a previous occurrence of T [i + 1..].
I If we can advance until T [i + 1..j] (which occurs in T [s..r])

and fail with T [j + 1] then T [i + 1..j + 1] is a phrase.
I We encode the phrase as (r , j − i ,T [j + 1]) and continue

from i = j + 2.

I The number z of phrases is the Lempel-Ziv complexity.

Lempel-Ziv complexity

I In 1976, Lempel and Ziv proposed the following measure.
I We start at the beginning of the text T [1..n], i = 0.
I We advance as much as possible, T [i + 1..], as long as

there is a previous occurrence of T [i + 1..].
I If we can advance until T [i + 1..j] (which occurs in T [s..r])

and fail with T [j + 1] then T [i + 1..j + 1] is a phrase.
I We encode the phrase as (r , j − i ,T [j + 1]) and continue

from i = j + 2.
I The number z of phrases is the Lempel-Ziv complexity.

Lempel-Ziv complexity

a l b raa a l a l b a r d a $ a

Output: (0,0,a)

Lempel-Ziv complexity

a l b raa a l a l b a r d a $ a

Output: (0,0,a) (0,0, l)

Lempel-Ziv complexity

a l b raa a l a l b a r d a $ a

Output: (0,0,a) (0,0, l) (1,1,b)

Lempel-Ziv complexity

a l b raa a l a l b a r d a $ a

Output: (0,0,a) (0,0, l) (1,1,b) (1,1, r)

Lempel-Ziv complexity

a l b raa a l a l b a r d a $ a

Output: (0,0,a) (0,0, l) (1,1,b) (1,1, r) (1,3, l)

Lempel-Ziv complexity

a l b raa a l a l b a r d a $ a

Output: (0,0,a) (0,0, l) (1,1,b) (1,1, r) (1,3, l) (3,4,d)

Lempel-Ziv complexity

a l b raa a l a l b a r d a $ a

Output: (0,0,a) (0,0, l) (1,1,b) (1,1, r) (1,3, l) (3,4,d) (1,1, $)

Lempel-Ziv complexity

I Two flavors, actually:

I If the source must finish before the target starts, zno [Farach
& Thorup 1995].

I If the source only must start before the source, z (the
original).

I The latter permits self-reference.
I Both left-to-right greedy parsings are optimal, so z ≤ zno.
I In some families, zno = Ω(z log n), e.g., T = an.

I The base of practical compressors like LZ77 and LZ78,
with immense success.

a a a aaa a a a a a a a a aa

z

zno

Lempel-Ziv complexity

I Two flavors, actually:
I If the source must finish before the target starts, zno [Farach

& Thorup 1995].

I If the source only must start before the source, z (the
original).

I The latter permits self-reference.
I Both left-to-right greedy parsings are optimal, so z ≤ zno.
I In some families, zno = Ω(z log n), e.g., T = an.

I The base of practical compressors like LZ77 and LZ78,
with immense success.

a a a aaa a a a a a a a a aa

z

zno

Lempel-Ziv complexity

I Two flavors, actually:
I If the source must finish before the target starts, zno [Farach

& Thorup 1995].
I If the source only must start before the source, z (the

original).

I The latter permits self-reference.
I Both left-to-right greedy parsings are optimal, so z ≤ zno.
I In some families, zno = Ω(z log n), e.g., T = an.

I The base of practical compressors like LZ77 and LZ78,
with immense success.

a a a aaa a a a a a a a a aa

z

zno

Lempel-Ziv complexity

I Two flavors, actually:
I If the source must finish before the target starts, zno [Farach

& Thorup 1995].
I If the source only must start before the source, z (the

original).
I The latter permits self-reference.

I Both left-to-right greedy parsings are optimal, so z ≤ zno.
I In some families, zno = Ω(z log n), e.g., T = an.

I The base of practical compressors like LZ77 and LZ78,
with immense success.

a a a aaa a a a a a a a a aa

z

zno

Lempel-Ziv complexity

I Two flavors, actually:
I If the source must finish before the target starts, zno [Farach

& Thorup 1995].
I If the source only must start before the source, z (the

original).
I The latter permits self-reference.
I Both left-to-right greedy parsings are optimal, so z ≤ zno.

I In some families, zno = Ω(z log n), e.g., T = an.
I The base of practical compressors like LZ77 and LZ78,

with immense success.

a a a aaa a a a a a a a a aa

z

zno

Lempel-Ziv complexity

I Two flavors, actually:
I If the source must finish before the target starts, zno [Farach

& Thorup 1995].
I If the source only must start before the source, z (the

original).
I The latter permits self-reference.
I Both left-to-right greedy parsings are optimal, so z ≤ zno.
I In some families, zno = Ω(z log n), e.g., T = an.

I The base of practical compressors like LZ77 and LZ78,
with immense success.

a a a aaa a a a a a a a a aa

z

zno

Lempel-Ziv complexity

I Two flavors, actually:
I If the source must finish before the target starts, zno [Farach

& Thorup 1995].
I If the source only must start before the source, z (the

original).
I The latter permits self-reference.
I Both left-to-right greedy parsings are optimal, so z ≤ zno.
I In some families, zno = Ω(z log n), e.g., T = an.

I The base of practical compressors like LZ77 and LZ78,
with immense success.

a a a aaa a a a a a a a a aa

z

zno

Lempel-Ziv complexity

Good properties
I It converges to Shannon’s entropy on ergodic sources.

I It holds zno = O(n/ logσ n), so space is O(n log σ) bits.
I It can be computed in O(n) time for both zno [Rodeh, Pratt,

Even 1981] and z [Crochemore et al. 2012].
I It performs very well on repetitive sequences.
I Measure z is taken as a gold standard.

Bad properties

I It is not robust, e.g., it changes if we reverse T and may
decrease upon appends on T .

I It is not known how to access T [i] within O(zno) space.
I It may double upon a single character edit on T [Akagi,

Funakoshi, Inenaga 2022].

Lempel-Ziv complexity

Good properties
I It converges to Shannon’s entropy on ergodic sources.
I It holds zno = O(n/ logσ n), so space is O(n log σ) bits.

I It can be computed in O(n) time for both zno [Rodeh, Pratt,
Even 1981] and z [Crochemore et al. 2012].

I It performs very well on repetitive sequences.
I Measure z is taken as a gold standard.

Bad properties

I It is not robust, e.g., it changes if we reverse T and may
decrease upon appends on T .

I It is not known how to access T [i] within O(zno) space.
I It may double upon a single character edit on T [Akagi,

Funakoshi, Inenaga 2022].

Lempel-Ziv complexity

Good properties
I It converges to Shannon’s entropy on ergodic sources.
I It holds zno = O(n/ logσ n), so space is O(n log σ) bits.
I It can be computed in O(n) time for both zno [Rodeh, Pratt,

Even 1981] and z [Crochemore et al. 2012].

I It performs very well on repetitive sequences.
I Measure z is taken as a gold standard.

Bad properties

I It is not robust, e.g., it changes if we reverse T and may
decrease upon appends on T .

I It is not known how to access T [i] within O(zno) space.
I It may double upon a single character edit on T [Akagi,

Funakoshi, Inenaga 2022].

Lempel-Ziv complexity

Good properties
I It converges to Shannon’s entropy on ergodic sources.
I It holds zno = O(n/ logσ n), so space is O(n log σ) bits.
I It can be computed in O(n) time for both zno [Rodeh, Pratt,

Even 1981] and z [Crochemore et al. 2012].
I It performs very well on repetitive sequences.

I Measure z is taken as a gold standard.

Bad properties

I It is not robust, e.g., it changes if we reverse T and may
decrease upon appends on T .

I It is not known how to access T [i] within O(zno) space.
I It may double upon a single character edit on T [Akagi,

Funakoshi, Inenaga 2022].

Lempel-Ziv complexity

Good properties
I It converges to Shannon’s entropy on ergodic sources.
I It holds zno = O(n/ logσ n), so space is O(n log σ) bits.
I It can be computed in O(n) time for both zno [Rodeh, Pratt,

Even 1981] and z [Crochemore et al. 2012].
I It performs very well on repetitive sequences.
I Measure z is taken as a gold standard.

Bad properties

I It is not robust, e.g., it changes if we reverse T and may
decrease upon appends on T .

I It is not known how to access T [i] within O(zno) space.
I It may double upon a single character edit on T [Akagi,

Funakoshi, Inenaga 2022].

Lempel-Ziv complexity

Good properties
I It converges to Shannon’s entropy on ergodic sources.
I It holds zno = O(n/ logσ n), so space is O(n log σ) bits.
I It can be computed in O(n) time for both zno [Rodeh, Pratt,

Even 1981] and z [Crochemore et al. 2012].
I It performs very well on repetitive sequences.
I Measure z is taken as a gold standard.

Bad properties

I It is not robust, e.g., it changes if we reverse T and may
decrease upon appends on T .

I It is not known how to access T [i] within O(zno) space.
I It may double upon a single character edit on T [Akagi,

Funakoshi, Inenaga 2022].

Lempel-Ziv complexity

Good properties
I It converges to Shannon’s entropy on ergodic sources.
I It holds zno = O(n/ logσ n), so space is O(n log σ) bits.
I It can be computed in O(n) time for both zno [Rodeh, Pratt,

Even 1981] and z [Crochemore et al. 2012].
I It performs very well on repetitive sequences.
I Measure z is taken as a gold standard.

Bad properties
I It is not robust, e.g., it changes if we reverse T and may

decrease upon appends on T .

I It is not known how to access T [i] within O(zno) space.
I It may double upon a single character edit on T [Akagi,

Funakoshi, Inenaga 2022].

Lempel-Ziv complexity

Good properties
I It converges to Shannon’s entropy on ergodic sources.
I It holds zno = O(n/ logσ n), so space is O(n log σ) bits.
I It can be computed in O(n) time for both zno [Rodeh, Pratt,

Even 1981] and z [Crochemore et al. 2012].
I It performs very well on repetitive sequences.
I Measure z is taken as a gold standard.

Bad properties
I It is not robust, e.g., it changes if we reverse T and may

decrease upon appends on T .
I It is not known how to access T [i] within O(zno) space.

I It may double upon a single character edit on T [Akagi,
Funakoshi, Inenaga 2022].

Lempel-Ziv complexity

Good properties
I It converges to Shannon’s entropy on ergodic sources.
I It holds zno = O(n/ logσ n), so space is O(n log σ) bits.
I It can be computed in O(n) time for both zno [Rodeh, Pratt,

Even 1981] and z [Crochemore et al. 2012].
I It performs very well on repetitive sequences.
I Measure z is taken as a gold standard.

Bad properties
I It is not robust, e.g., it changes if we reverse T and may

decrease upon appends on T .
I It is not known how to access T [i] within O(zno) space.
I It may double upon a single character edit on T [Akagi,

Funakoshi, Inenaga 2022].

Enabling access: LZ-End [Kreft & N. 2013]

I It requires that the source ends at a phrase boundary.

I This time a greedy parsing does not yield the smallest
parse.

I The optimal parsing produces zend ≥ zno phrases.
I The greedy parsing produces ze ≥ zend phrases

I ze = O(n/ logσ n)
I ze = O(z log2(n/z)) [Kempa & Saha 2022]

I The greedy parsing can be computed in O(n) time [Kempa
& Kosolobov 2017].

I Any LZ-End parse enables accessing an individual symbol
in time O(log5 n) [Kempa & Saha 2022].

I ze is reasonably close to z in practice.

Enabling access: LZ-End [Kreft & N. 2013]

I It requires that the source ends at a phrase boundary.
I This time a greedy parsing does not yield the smallest

parse.

I The optimal parsing produces zend ≥ zno phrases.
I The greedy parsing produces ze ≥ zend phrases

I ze = O(n/ logσ n)
I ze = O(z log2(n/z)) [Kempa & Saha 2022]

I The greedy parsing can be computed in O(n) time [Kempa
& Kosolobov 2017].

I Any LZ-End parse enables accessing an individual symbol
in time O(log5 n) [Kempa & Saha 2022].

I ze is reasonably close to z in practice.

Enabling access: LZ-End [Kreft & N. 2013]

I It requires that the source ends at a phrase boundary.
I This time a greedy parsing does not yield the smallest

parse.
I The optimal parsing produces zend ≥ zno phrases.

I The greedy parsing produces ze ≥ zend phrases

I ze = O(n/ logσ n)
I ze = O(z log2(n/z)) [Kempa & Saha 2022]

I The greedy parsing can be computed in O(n) time [Kempa
& Kosolobov 2017].

I Any LZ-End parse enables accessing an individual symbol
in time O(log5 n) [Kempa & Saha 2022].

I ze is reasonably close to z in practice.

Enabling access: LZ-End [Kreft & N. 2013]

I It requires that the source ends at a phrase boundary.
I This time a greedy parsing does not yield the smallest

parse.
I The optimal parsing produces zend ≥ zno phrases.
I The greedy parsing produces ze ≥ zend phrases

I ze = O(n/ logσ n)
I ze = O(z log2(n/z)) [Kempa & Saha 2022]

I The greedy parsing can be computed in O(n) time [Kempa
& Kosolobov 2017].

I Any LZ-End parse enables accessing an individual symbol
in time O(log5 n) [Kempa & Saha 2022].

I ze is reasonably close to z in practice.

Enabling access: LZ-End [Kreft & N. 2013]

I It requires that the source ends at a phrase boundary.
I This time a greedy parsing does not yield the smallest

parse.
I The optimal parsing produces zend ≥ zno phrases.
I The greedy parsing produces ze ≥ zend phrases

I ze = O(n/ logσ n)

I ze = O(z log2(n/z)) [Kempa & Saha 2022]
I The greedy parsing can be computed in O(n) time [Kempa

& Kosolobov 2017].
I Any LZ-End parse enables accessing an individual symbol

in time O(log5 n) [Kempa & Saha 2022].
I ze is reasonably close to z in practice.

Enabling access: LZ-End [Kreft & N. 2013]

I It requires that the source ends at a phrase boundary.
I This time a greedy parsing does not yield the smallest

parse.
I The optimal parsing produces zend ≥ zno phrases.
I The greedy parsing produces ze ≥ zend phrases

I ze = O(n/ logσ n)
I ze = O(z log2(n/z)) [Kempa & Saha 2022]

I The greedy parsing can be computed in O(n) time [Kempa
& Kosolobov 2017].

I Any LZ-End parse enables accessing an individual symbol
in time O(log5 n) [Kempa & Saha 2022].

I ze is reasonably close to z in practice.

Enabling access: LZ-End [Kreft & N. 2013]

I It requires that the source ends at a phrase boundary.
I This time a greedy parsing does not yield the smallest

parse.
I The optimal parsing produces zend ≥ zno phrases.
I The greedy parsing produces ze ≥ zend phrases

I ze = O(n/ logσ n)
I ze = O(z log2(n/z)) [Kempa & Saha 2022]

I The greedy parsing can be computed in O(n) time [Kempa
& Kosolobov 2017].

I Any LZ-End parse enables accessing an individual symbol
in time O(log5 n) [Kempa & Saha 2022].

I ze is reasonably close to z in practice.

Enabling access: LZ-End [Kreft & N. 2013]

I It requires that the source ends at a phrase boundary.
I This time a greedy parsing does not yield the smallest

parse.
I The optimal parsing produces zend ≥ zno phrases.
I The greedy parsing produces ze ≥ zend phrases

I ze = O(n/ logσ n)
I ze = O(z log2(n/z)) [Kempa & Saha 2022]

I The greedy parsing can be computed in O(n) time [Kempa
& Kosolobov 2017].

I Any LZ-End parse enables accessing an individual symbol
in time O(log5 n) [Kempa & Saha 2022].

I ze is reasonably close to z in practice.

Enabling access: LZ-End [Kreft & N. 2013]

I It requires that the source ends at a phrase boundary.
I This time a greedy parsing does not yield the smallest

parse.
I The optimal parsing produces zend ≥ zno phrases.
I The greedy parsing produces ze ≥ zend phrases

I ze = O(n/ logσ n)
I ze = O(z log2(n/z)) [Kempa & Saha 2022]

I The greedy parsing can be computed in O(n) time [Kempa
& Kosolobov 2017].

I Any LZ-End parse enables accessing an individual symbol
in time O(log5 n) [Kempa & Saha 2022].

I ze is reasonably close to z in practice.

Enabling access: LZ-End [Kreft & N. 2013]

z = 7
a l b raa a l a a b a r d a $ l

noz = 7

z = 7e

a l b raa a l a a b a r d a $ l

z = end 7

Bidirectional macro schemes

I In 1982, Storer and Szymanski proposed a more principled
measure:

I The text is parsed into phrases as in Lempel-Ziv.
I But their sources can be forwards or backwards in T .
I As long as no cycles are introduced for individual positions.
I Explicit symbols are also permitted.

I The associated measure is b, the least number of phrases
one can achieve.

I Never reached popularity, though.

Bidirectional macro schemes

I In 1982, Storer and Szymanski proposed a more principled
measure:
I The text is parsed into phrases as in Lempel-Ziv.

I But their sources can be forwards or backwards in T .
I As long as no cycles are introduced for individual positions.
I Explicit symbols are also permitted.

I The associated measure is b, the least number of phrases
one can achieve.

I Never reached popularity, though.

Bidirectional macro schemes

I In 1982, Storer and Szymanski proposed a more principled
measure:
I The text is parsed into phrases as in Lempel-Ziv.
I But their sources can be forwards or backwards in T .

I As long as no cycles are introduced for individual positions.
I Explicit symbols are also permitted.

I The associated measure is b, the least number of phrases
one can achieve.

I Never reached popularity, though.

Bidirectional macro schemes

I In 1982, Storer and Szymanski proposed a more principled
measure:
I The text is parsed into phrases as in Lempel-Ziv.
I But their sources can be forwards or backwards in T .
I As long as no cycles are introduced for individual positions.

I Explicit symbols are also permitted.
I The associated measure is b, the least number of phrases

one can achieve.
I Never reached popularity, though.

Bidirectional macro schemes

I In 1982, Storer and Szymanski proposed a more principled
measure:
I The text is parsed into phrases as in Lempel-Ziv.
I But their sources can be forwards or backwards in T .
I As long as no cycles are introduced for individual positions.
I Explicit symbols are also permitted.

I The associated measure is b, the least number of phrases
one can achieve.

I Never reached popularity, though.

Bidirectional macro schemes

I In 1982, Storer and Szymanski proposed a more principled
measure:
I The text is parsed into phrases as in Lempel-Ziv.
I But their sources can be forwards or backwards in T .
I As long as no cycles are introduced for individual positions.
I Explicit symbols are also permitted.

I The associated measure is b, the least number of phrases
one can achieve.

I Never reached popularity, though.

Bidirectional macro schemes

I In 1982, Storer and Szymanski proposed a more principled
measure:
I The text is parsed into phrases as in Lempel-Ziv.
I But their sources can be forwards or backwards in T .
I As long as no cycles are introduced for individual positions.
I Explicit symbols are also permitted.

I The associated measure is b, the least number of phrases
one can achieve.

I Never reached popularity, though.

Bidirectional macro schemes

a l b raa a l a l b a r d a $

11z =

a

a l b raa a l a a b a r d a $l

10b =

Bidirectional macro schemes

a l b raa a l a l b a r d a $

11z =

a

a l b raa a l a a b a r d a $l

10b =

Bidirectional macro schemes

Relation with z
I Obviously it holds b ≤ z for every text.

I It holds z = O(b log(n/b)) [N., Ochoa, Prezza 2021].

I By using locally consistent parsing on top of the macro
scheme.

I Such a parsing cuts the text so that identical substrings are
largely parsed in the same way.

I The resulting chunks are processed in successive rounds.
I More details later.

I For some families, z = Ω(b log n) [Gagie, N., Prezza 2018].

I E.g., Fibonacci words, F1 = b, F2 = a, Fk = Fk−1Fk−2.
I b, a, ab, aba, abaab, abaababa, etc.
I The family has b = O(1) and z = Θ(log n).

Bidirectional macro schemes

Relation with z
I Obviously it holds b ≤ z for every text.
I It holds z = O(b log(n/b)) [N., Ochoa, Prezza 2021].

I By using locally consistent parsing on top of the macro
scheme.

I Such a parsing cuts the text so that identical substrings are
largely parsed in the same way.

I The resulting chunks are processed in successive rounds.
I More details later.

I For some families, z = Ω(b log n) [Gagie, N., Prezza 2018].

I E.g., Fibonacci words, F1 = b, F2 = a, Fk = Fk−1Fk−2.
I b, a, ab, aba, abaab, abaababa, etc.
I The family has b = O(1) and z = Θ(log n).

Bidirectional macro schemes

Relation with z
I Obviously it holds b ≤ z for every text.
I It holds z = O(b log(n/b)) [N., Ochoa, Prezza 2021].

I By using locally consistent parsing on top of the macro
scheme.

I Such a parsing cuts the text so that identical substrings are
largely parsed in the same way.

I The resulting chunks are processed in successive rounds.
I More details later.

I For some families, z = Ω(b log n) [Gagie, N., Prezza 2018].

I E.g., Fibonacci words, F1 = b, F2 = a, Fk = Fk−1Fk−2.
I b, a, ab, aba, abaab, abaababa, etc.
I The family has b = O(1) and z = Θ(log n).

Bidirectional macro schemes

Relation with z
I Obviously it holds b ≤ z for every text.
I It holds z = O(b log(n/b)) [N., Ochoa, Prezza 2021].

I By using locally consistent parsing on top of the macro
scheme.

I Such a parsing cuts the text so that identical substrings are
largely parsed in the same way.

I The resulting chunks are processed in successive rounds.
I More details later.

I For some families, z = Ω(b log n) [Gagie, N., Prezza 2018].

I E.g., Fibonacci words, F1 = b, F2 = a, Fk = Fk−1Fk−2.
I b, a, ab, aba, abaab, abaababa, etc.
I The family has b = O(1) and z = Θ(log n).

Bidirectional macro schemes

Relation with z
I Obviously it holds b ≤ z for every text.
I It holds z = O(b log(n/b)) [N., Ochoa, Prezza 2021].

I By using locally consistent parsing on top of the macro
scheme.

I Such a parsing cuts the text so that identical substrings are
largely parsed in the same way.

I The resulting chunks are processed in successive rounds.

I More details later.
I For some families, z = Ω(b log n) [Gagie, N., Prezza 2018].

I E.g., Fibonacci words, F1 = b, F2 = a, Fk = Fk−1Fk−2.
I b, a, ab, aba, abaab, abaababa, etc.
I The family has b = O(1) and z = Θ(log n).

Bidirectional macro schemes

Relation with z
I Obviously it holds b ≤ z for every text.
I It holds z = O(b log(n/b)) [N., Ochoa, Prezza 2021].

I By using locally consistent parsing on top of the macro
scheme.

I Such a parsing cuts the text so that identical substrings are
largely parsed in the same way.

I The resulting chunks are processed in successive rounds.
I More details later.

I For some families, z = Ω(b log n) [Gagie, N., Prezza 2018].

I E.g., Fibonacci words, F1 = b, F2 = a, Fk = Fk−1Fk−2.
I b, a, ab, aba, abaab, abaababa, etc.
I The family has b = O(1) and z = Θ(log n).

Bidirectional macro schemes

Relation with z
I Obviously it holds b ≤ z for every text.
I It holds z = O(b log(n/b)) [N., Ochoa, Prezza 2021].

I By using locally consistent parsing on top of the macro
scheme.

I Such a parsing cuts the text so that identical substrings are
largely parsed in the same way.

I The resulting chunks are processed in successive rounds.
I More details later.

I For some families, z = Ω(b log n) [Gagie, N., Prezza 2018].

I E.g., Fibonacci words, F1 = b, F2 = a, Fk = Fk−1Fk−2.
I b, a, ab, aba, abaab, abaababa, etc.
I The family has b = O(1) and z = Θ(log n).

Bidirectional macro schemes

Relation with z
I Obviously it holds b ≤ z for every text.
I It holds z = O(b log(n/b)) [N., Ochoa, Prezza 2021].

I By using locally consistent parsing on top of the macro
scheme.

I Such a parsing cuts the text so that identical substrings are
largely parsed in the same way.

I The resulting chunks are processed in successive rounds.
I More details later.

I For some families, z = Ω(b log n) [Gagie, N., Prezza 2018].
I E.g., Fibonacci words, F1 = b, F2 = a, Fk = Fk−1Fk−2.

I b, a, ab, aba, abaab, abaababa, etc.
I The family has b = O(1) and z = Θ(log n).

Bidirectional macro schemes

Relation with z
I Obviously it holds b ≤ z for every text.
I It holds z = O(b log(n/b)) [N., Ochoa, Prezza 2021].

I By using locally consistent parsing on top of the macro
scheme.

I Such a parsing cuts the text so that identical substrings are
largely parsed in the same way.

I The resulting chunks are processed in successive rounds.
I More details later.

I For some families, z = Ω(b log n) [Gagie, N., Prezza 2018].
I E.g., Fibonacci words, F1 = b, F2 = a, Fk = Fk−1Fk−2.
I b, a, ab, aba, abaab, abaababa, etc.

I The family has b = O(1) and z = Θ(log n).

Bidirectional macro schemes

Relation with z
I Obviously it holds b ≤ z for every text.
I It holds z = O(b log(n/b)) [N., Ochoa, Prezza 2021].

I By using locally consistent parsing on top of the macro
scheme.

I Such a parsing cuts the text so that identical substrings are
largely parsed in the same way.

I The resulting chunks are processed in successive rounds.
I More details later.

I For some families, z = Ω(b log n) [Gagie, N., Prezza 2018].
I E.g., Fibonacci words, F1 = b, F2 = a, Fk = Fk−1Fk−2.
I b, a, ab, aba, abaab, abaababa, etc.
I The family has b = O(1) and z = Θ(log n).

Bidirectional macro schemes

Good properties
I It is never worse than z.

I The text can still be encoded within O(b log n) bits.
I It is more robust, e.g., b is the same if we reverse T .

Bad properties

I Still non-monotonic upon symbol appends [Ferragina &
Tosoni 2021].

I It may grow by 50% upon a single character edit on T
[Akagi, Funakoshi, Inenaga 2022].

I It is NP-hard to compute b [Gallant 1982].
I No interesting approximations except for z.

Bidirectional macro schemes

Good properties
I It is never worse than z.
I The text can still be encoded within O(b log n) bits.

I It is more robust, e.g., b is the same if we reverse T .

Bad properties

I Still non-monotonic upon symbol appends [Ferragina &
Tosoni 2021].

I It may grow by 50% upon a single character edit on T
[Akagi, Funakoshi, Inenaga 2022].

I It is NP-hard to compute b [Gallant 1982].
I No interesting approximations except for z.

Bidirectional macro schemes

Good properties
I It is never worse than z.
I The text can still be encoded within O(b log n) bits.
I It is more robust, e.g., b is the same if we reverse T .

Bad properties

I Still non-monotonic upon symbol appends [Ferragina &
Tosoni 2021].

I It may grow by 50% upon a single character edit on T
[Akagi, Funakoshi, Inenaga 2022].

I It is NP-hard to compute b [Gallant 1982].
I No interesting approximations except for z.

Bidirectional macro schemes

Good properties
I It is never worse than z.
I The text can still be encoded within O(b log n) bits.
I It is more robust, e.g., b is the same if we reverse T .

Bad properties

I Still non-monotonic upon symbol appends [Ferragina &
Tosoni 2021].

I It may grow by 50% upon a single character edit on T
[Akagi, Funakoshi, Inenaga 2022].

I It is NP-hard to compute b [Gallant 1982].
I No interesting approximations except for z.

Bidirectional macro schemes

Good properties
I It is never worse than z.
I The text can still be encoded within O(b log n) bits.
I It is more robust, e.g., b is the same if we reverse T .

Bad properties
I Still non-monotonic upon symbol appends [Ferragina &

Tosoni 2021].

I It may grow by 50% upon a single character edit on T
[Akagi, Funakoshi, Inenaga 2022].

I It is NP-hard to compute b [Gallant 1982].
I No interesting approximations except for z.

Bidirectional macro schemes

Good properties
I It is never worse than z.
I The text can still be encoded within O(b log n) bits.
I It is more robust, e.g., b is the same if we reverse T .

Bad properties
I Still non-monotonic upon symbol appends [Ferragina &

Tosoni 2021].
I It may grow by 50% upon a single character edit on T

[Akagi, Funakoshi, Inenaga 2022].

I It is NP-hard to compute b [Gallant 1982].
I No interesting approximations except for z.

Bidirectional macro schemes

Good properties
I It is never worse than z.
I The text can still be encoded within O(b log n) bits.
I It is more robust, e.g., b is the same if we reverse T .

Bad properties
I Still non-monotonic upon symbol appends [Ferragina &

Tosoni 2021].
I It may grow by 50% upon a single character edit on T

[Akagi, Funakoshi, Inenaga 2022].
I It is NP-hard to compute b [Gallant 1982].

I No interesting approximations except for z.

Bidirectional macro schemes

Good properties
I It is never worse than z.
I The text can still be encoded within O(b log n) bits.
I It is more robust, e.g., b is the same if we reverse T .

Bad properties
I Still non-monotonic upon symbol appends [Ferragina &

Tosoni 2021].
I It may grow by 50% upon a single character edit on T

[Akagi, Funakoshi, Inenaga 2022].
I It is NP-hard to compute b [Gallant 1982].
I No interesting approximations except for z.

Grammar compression

I In 2000, Kieffer and Yang proposed to find a small
grammar that generates T and only T .

I The size g of the smallest such grammar is then a new
measure of compressibility.

I The smallest grammar size converges to Shannon’s
entropy too.

I Finding the smallest grammar is NP-hard, however
[Charikar et al. 2005].

I Not so unpopular because decent heuristics exist, in fact
preceding the formalization:

I [Nakamura & Murashima 1996].
I Byte-Pair Encoding [Manber 1997]
I Sequitur [Nevill-Manning & Witten 1997].
I RePair [Larsson & Moffat 1999].

Grammar compression

I In 2000, Kieffer and Yang proposed to find a small
grammar that generates T and only T .

I The size g of the smallest such grammar is then a new
measure of compressibility.

I The smallest grammar size converges to Shannon’s
entropy too.

I Finding the smallest grammar is NP-hard, however
[Charikar et al. 2005].

I Not so unpopular because decent heuristics exist, in fact
preceding the formalization:

I [Nakamura & Murashima 1996].
I Byte-Pair Encoding [Manber 1997]
I Sequitur [Nevill-Manning & Witten 1997].
I RePair [Larsson & Moffat 1999].

Grammar compression

I In 2000, Kieffer and Yang proposed to find a small
grammar that generates T and only T .

I The size g of the smallest such grammar is then a new
measure of compressibility.

I The smallest grammar size converges to Shannon’s
entropy too.

I Finding the smallest grammar is NP-hard, however
[Charikar et al. 2005].

I Not so unpopular because decent heuristics exist, in fact
preceding the formalization:

I [Nakamura & Murashima 1996].
I Byte-Pair Encoding [Manber 1997]
I Sequitur [Nevill-Manning & Witten 1997].
I RePair [Larsson & Moffat 1999].

Grammar compression

I In 2000, Kieffer and Yang proposed to find a small
grammar that generates T and only T .

I The size g of the smallest such grammar is then a new
measure of compressibility.

I The smallest grammar size converges to Shannon’s
entropy too.

I Finding the smallest grammar is NP-hard, however
[Charikar et al. 2005].

I Not so unpopular because decent heuristics exist, in fact
preceding the formalization:

I [Nakamura & Murashima 1996].
I Byte-Pair Encoding [Manber 1997]
I Sequitur [Nevill-Manning & Witten 1997].
I RePair [Larsson & Moffat 1999].

Grammar compression

I In 2000, Kieffer and Yang proposed to find a small
grammar that generates T and only T .

I The size g of the smallest such grammar is then a new
measure of compressibility.

I The smallest grammar size converges to Shannon’s
entropy too.

I Finding the smallest grammar is NP-hard, however
[Charikar et al. 2005].

I Not so unpopular because decent heuristics exist, in fact
preceding the formalization:

I [Nakamura & Murashima 1996].
I Byte-Pair Encoding [Manber 1997]
I Sequitur [Nevill-Manning & Witten 1997].
I RePair [Larsson & Moffat 1999].

Grammar compression

I In 2000, Kieffer and Yang proposed to find a small
grammar that generates T and only T .

I The size g of the smallest such grammar is then a new
measure of compressibility.

I The smallest grammar size converges to Shannon’s
entropy too.

I Finding the smallest grammar is NP-hard, however
[Charikar et al. 2005].

I Not so unpopular because decent heuristics exist, in fact
preceding the formalization:
I [Nakamura & Murashima 1996].

I Byte-Pair Encoding [Manber 1997]
I Sequitur [Nevill-Manning & Witten 1997].
I RePair [Larsson & Moffat 1999].

Grammar compression

I In 2000, Kieffer and Yang proposed to find a small
grammar that generates T and only T .

I The size g of the smallest such grammar is then a new
measure of compressibility.

I The smallest grammar size converges to Shannon’s
entropy too.

I Finding the smallest grammar is NP-hard, however
[Charikar et al. 2005].

I Not so unpopular because decent heuristics exist, in fact
preceding the formalization:
I [Nakamura & Murashima 1996].
I Byte-Pair Encoding [Manber 1997]

I Sequitur [Nevill-Manning & Witten 1997].
I RePair [Larsson & Moffat 1999].

Grammar compression

I In 2000, Kieffer and Yang proposed to find a small
grammar that generates T and only T .

I The size g of the smallest such grammar is then a new
measure of compressibility.

I The smallest grammar size converges to Shannon’s
entropy too.

I Finding the smallest grammar is NP-hard, however
[Charikar et al. 2005].

I Not so unpopular because decent heuristics exist, in fact
preceding the formalization:
I [Nakamura & Murashima 1996].
I Byte-Pair Encoding [Manber 1997]
I Sequitur [Nevill-Manning & Witten 1997].

I RePair [Larsson & Moffat 1999].

Grammar compression

I In 2000, Kieffer and Yang proposed to find a small
grammar that generates T and only T .

I The size g of the smallest such grammar is then a new
measure of compressibility.

I The smallest grammar size converges to Shannon’s
entropy too.

I Finding the smallest grammar is NP-hard, however
[Charikar et al. 2005].

I Not so unpopular because decent heuristics exist, in fact
preceding the formalization:
I [Nakamura & Murashima 1996].
I Byte-Pair Encoding [Manber 1997]
I Sequitur [Nevill-Manning & Witten 1997].
I RePair [Larsson & Moffat 1999].

Grammar compression

a l b raa a l a l b a r d a $

11z =

a

S A d a $B B

a l b raa a l a a b a r d a $l

A

BA a l

B B

A ba a r

A A

g = 13

S

Grammar compression

a l b raa a l a l b a r d a $

11z =

a

S A d a $B B

a l b raa a l a a b a r d a $l

A

BA a l

B B

A ba a r

A A

g = 13

S

The relation between grammars and Lempel-Ziv
I Rytter [2003] and Charikar et al. [2005].

I They show that zno = O(g).

I By creating a left-to-right parse from the grammar tree.

I The same proof shows that zend ≤ O(g).

a l b raa d a $

A

B B

A A

S

a l a a b a rl

BA a l A ba a r S A d a $B B

The relation between grammars and Lempel-Ziv
I Rytter [2003] and Charikar et al. [2005].
I They show that zno = O(g).

I By creating a left-to-right parse from the grammar tree.
I The same proof shows that zend ≤ O(g).

a l b raa d a $

A

B B

A A

S

a l a a b a rl

BA a l A ba a r S A d a $B B

The relation between grammars and Lempel-Ziv
I Rytter [2003] and Charikar et al. [2005].
I They show that zno = O(g).

I By creating a left-to-right parse from the grammar tree.

I The same proof shows that zend ≤ O(g).

a l b raa d a $

A

B B

A A

S

a l a a b a rl

BA a l A ba a r S A d a $B B

The relation between grammars and Lempel-Ziv
I Rytter [2003] and Charikar et al. [2005].
I They show that zno = O(g).

I By creating a left-to-right parse from the grammar tree.
I The same proof shows that zend ≤ O(g).

a l b raa d a $

A

B B

A A

S

a l a a b a rl

BA a l A ba a r S A d a $B B

The relation between grammars and Lempel-Ziv
I Rytter [2003] and Charikar et al. [2005].
I They show that zno = O(g).

I By creating a left-to-right parse from the grammar tree.
I The same proof shows that zend ≤ O(g).

a l b raa d a $

A

B B

A A

S

a l a a b a rl

BA a l A ba a r S A d a $B B

The relation between grammars and Lempel-Ziv

I They also show that g = O(zno log(n/zno)).

I By creating a grammar from a Lempel-Ziv parse.

The relation between grammars and Lempel-Ziv

I They also show that g = O(zno log(n/zno)).
I By creating a grammar from a Lempel-Ziv parse.

The relation between grammars and Lempel-Ziv

I They also show that g = O(zno log(n/zno)).
I By creating a grammar from a Lempel-Ziv parse.

The relation between grammars and Lempel-Ziv

I They also show that g = O(zno log(n/zno)).
I By creating a grammar from a Lempel-Ziv parse.

The relation between grammars and Lempel-Ziv

I They also show that g = O(zno log(n/zno)).
I By creating a grammar from a Lempel-Ziv parse.

The relation between grammars and Lempel-Ziv

I Gawrychowski [2011] proved that g = O(z log(n/z)) also
holds.

I By extending the previous proof to the self-referential case.
I These imply that the phrase is periodic.
I The periodic string is covered by a grammar of logarithmic

size.

The relation between grammars and Lempel-Ziv

I Gawrychowski [2011] proved that g = O(z log(n/z)) also
holds.
I By extending the previous proof to the self-referential case.

I These imply that the phrase is periodic.
I The periodic string is covered by a grammar of logarithmic

size.

The relation between grammars and Lempel-Ziv

I Gawrychowski [2011] proved that g = O(z log(n/z)) also
holds.
I By extending the previous proof to the self-referential case.
I These imply that the phrase is periodic.

I The periodic string is covered by a grammar of logarithmic
size.

The relation between grammars and Lempel-Ziv

I Gawrychowski [2011] proved that g = O(z log(n/z)) also
holds.
I By extending the previous proof to the self-referential case.
I These imply that the phrase is periodic.

I The periodic string is covered by a grammar of logarithmic
size.

The relation between grammars and Lempel-Ziv

I Gawrychowski [2011] proved that g = O(z log(n/z)) also
holds.
I By extending the previous proof to the self-referential case.
I These imply that the phrase is periodic.

I The periodic string is covered by a grammar of logarithmic
size.

The relation between grammars and Lempel-Ziv

I Gawrychowski [2011] proved that g = O(z log(n/z)) also
holds.
I By extending the previous proof to the self-referential case.
I These imply that the phrase is periodic.
I The periodic string is covered by a grammar of logarithmic

size.

Accessing T in compressed space
I The grammar, in addition, is binary and balanced.

I That is, its height is O(log n).
I This yields the first access method within space

O(zno log(n/zno)).

I Store the lengths to which nonterminals expand.
I Walk down the grammar tree from the initial symbol

towards the desired position i .
I At the leaf we reach the terminal T [i].
I We can extract T [i ..i + `] in time O(`+ log n).

i

Accessing T in compressed space
I The grammar, in addition, is binary and balanced.
I That is, its height is O(log n).

I This yields the first access method within space
O(zno log(n/zno)).

I Store the lengths to which nonterminals expand.
I Walk down the grammar tree from the initial symbol

towards the desired position i .
I At the leaf we reach the terminal T [i].
I We can extract T [i ..i + `] in time O(`+ log n).

i

Accessing T in compressed space
I The grammar, in addition, is binary and balanced.
I That is, its height is O(log n).
I This yields the first access method within space

O(zno log(n/zno)).

I Store the lengths to which nonterminals expand.
I Walk down the grammar tree from the initial symbol

towards the desired position i .
I At the leaf we reach the terminal T [i].
I We can extract T [i ..i + `] in time O(`+ log n).

i

Accessing T in compressed space
I The grammar, in addition, is binary and balanced.
I That is, its height is O(log n).
I This yields the first access method within space

O(zno log(n/zno)).
I Store the lengths to which nonterminals expand.

I Walk down the grammar tree from the initial symbol
towards the desired position i .

I At the leaf we reach the terminal T [i].
I We can extract T [i ..i + `] in time O(`+ log n).

i

Accessing T in compressed space
I The grammar, in addition, is binary and balanced.
I That is, its height is O(log n).
I This yields the first access method within space

O(zno log(n/zno)).
I Store the lengths to which nonterminals expand.
I Walk down the grammar tree from the initial symbol

towards the desired position i .

I At the leaf we reach the terminal T [i].
I We can extract T [i ..i + `] in time O(`+ log n).

i

Accessing T in compressed space
I The grammar, in addition, is binary and balanced.
I That is, its height is O(log n).
I This yields the first access method within space

O(zno log(n/zno)).
I Store the lengths to which nonterminals expand.
I Walk down the grammar tree from the initial symbol

towards the desired position i .
I At the leaf we reach the terminal T [i].

I We can extract T [i ..i + `] in time O(`+ log n).

i

Accessing T in compressed space
I The grammar, in addition, is binary and balanced.
I That is, its height is O(log n).
I This yields the first access method within space

O(zno log(n/zno)).
I Store the lengths to which nonterminals expand.
I Walk down the grammar tree from the initial symbol

towards the desired position i .
I At the leaf we reach the terminal T [i].
I We can extract T [i ..i + `] in time O(`+ log n).

i j

Accessing T in compressed space

I This holds for O(g) space in general.

I Because every grammar can be made binary and
balanced within the same asymptotic size [Ganardi, Jez,
Lohrey 2020].

Accessing T in compressed space

I This holds for O(g) space in general.
I Because every grammar can be made binary and

balanced within the same asymptotic size [Ganardi, Jez,
Lohrey 2020].

The relation between grammars and Lempel-Ziv

I For some families, g = Ω(zno log n/ log log n) [Charikar et
al. 2005].

I For example, ak1bak2bak3b · · · bakq , with k1 ≥ ki for all i ,
and q = Θ(log k1).

I It is parsed into zno = O(q + log k1) = O(log k1) phrases.
I Its grammar requires size Ω(log2 k1/ log log k1).

The relation between grammars and Lempel-Ziv

I For some families, g = Ω(zno log n/ log log n) [Charikar et
al. 2005].

I For example, ak1bak2bak3b · · · bakq , with k1 ≥ ki for all i ,
and q = Θ(log k1).

I It is parsed into zno = O(q + log k1) = O(log k1) phrases.
I Its grammar requires size Ω(log2 k1/ log log k1).

The relation between grammars and Lempel-Ziv

I For some families, g = Ω(zno log n/ log log n) [Charikar et
al. 2005].

I For example, ak1bak2bak3b · · · bakq , with k1 ≥ ki for all i ,
and q = Θ(log k1).

I It is parsed into zno = O(q + log k1) = O(log k1) phrases.

I Its grammar requires size Ω(log2 k1/ log log k1).

The relation between grammars and Lempel-Ziv

I For some families, g = Ω(zno log n/ log log n) [Charikar et
al. 2005].

I For example, ak1bak2bak3b · · · bakq , with k1 ≥ ki for all i ,
and q = Θ(log k1).

I It is parsed into zno = O(q + log k1) = O(log k1) phrases.
I Its grammar requires size Ω(log2 k1/ log log k1).

Recap

no
z

b z

z log(n/z)

g

b log(n/b)

end
z

e
z z log (n/z)

2

Run-length grammars

I They expand grammars by allowing rules A→ Bk .

I The size grl of the smallest such grammar is another
measure.

I It obviously holds grl ≤ g.
I In T = an it holds g, zno = Ω(grl log n).
I In some texts, grl = Ω(zno log n/ log log n) [Bille et al. 2017].

I Thue-Morse sequences, 01, 01 10, 0110 1001, ...
I Differential Thue-Morse, +, +=−, +=−+−=+, ...
I In such family, g = grl .
I They combine it with the result of Charikar et al.
I They obtain grl = Ω(log2 n/ log log n) and zno = O(log n).

I The same proof shows that grl = Ω(ze log n/ log log n).

Run-length grammars

I They expand grammars by allowing rules A→ Bk .
I The size grl of the smallest such grammar is another

measure.

I It obviously holds grl ≤ g.
I In T = an it holds g, zno = Ω(grl log n).
I In some texts, grl = Ω(zno log n/ log log n) [Bille et al. 2017].

I Thue-Morse sequences, 01, 01 10, 0110 1001, ...
I Differential Thue-Morse, +, +=−, +=−+−=+, ...
I In such family, g = grl .
I They combine it with the result of Charikar et al.
I They obtain grl = Ω(log2 n/ log log n) and zno = O(log n).

I The same proof shows that grl = Ω(ze log n/ log log n).

Run-length grammars

I They expand grammars by allowing rules A→ Bk .
I The size grl of the smallest such grammar is another

measure.
I It obviously holds grl ≤ g.

I In T = an it holds g, zno = Ω(grl log n).
I In some texts, grl = Ω(zno log n/ log log n) [Bille et al. 2017].

I Thue-Morse sequences, 01, 01 10, 0110 1001, ...
I Differential Thue-Morse, +, +=−, +=−+−=+, ...
I In such family, g = grl .
I They combine it with the result of Charikar et al.
I They obtain grl = Ω(log2 n/ log log n) and zno = O(log n).

I The same proof shows that grl = Ω(ze log n/ log log n).

Run-length grammars

I They expand grammars by allowing rules A→ Bk .
I The size grl of the smallest such grammar is another

measure.
I It obviously holds grl ≤ g.
I In T = an it holds g, zno = Ω(grl log n).

I In some texts, grl = Ω(zno log n/ log log n) [Bille et al. 2017].

I Thue-Morse sequences, 01, 01 10, 0110 1001, ...
I Differential Thue-Morse, +, +=−, +=−+−=+, ...
I In such family, g = grl .
I They combine it with the result of Charikar et al.
I They obtain grl = Ω(log2 n/ log log n) and zno = O(log n).

I The same proof shows that grl = Ω(ze log n/ log log n).

Run-length grammars

I They expand grammars by allowing rules A→ Bk .
I The size grl of the smallest such grammar is another

measure.
I It obviously holds grl ≤ g.
I In T = an it holds g, zno = Ω(grl log n).
I In some texts, grl = Ω(zno log n/ log log n) [Bille et al. 2017].

I Thue-Morse sequences, 01, 01 10, 0110 1001, ...
I Differential Thue-Morse, +, +=−, +=−+−=+, ...
I In such family, g = grl .
I They combine it with the result of Charikar et al.
I They obtain grl = Ω(log2 n/ log log n) and zno = O(log n).

I The same proof shows that grl = Ω(ze log n/ log log n).

Run-length grammars

I They expand grammars by allowing rules A→ Bk .
I The size grl of the smallest such grammar is another

measure.
I It obviously holds grl ≤ g.
I In T = an it holds g, zno = Ω(grl log n).
I In some texts, grl = Ω(zno log n/ log log n) [Bille et al. 2017].

I Thue-Morse sequences, 01, 01 10, 0110 1001, ...

I Differential Thue-Morse, +, +=−, +=−+−=+, ...
I In such family, g = grl .
I They combine it with the result of Charikar et al.
I They obtain grl = Ω(log2 n/ log log n) and zno = O(log n).

I The same proof shows that grl = Ω(ze log n/ log log n).

Run-length grammars

I They expand grammars by allowing rules A→ Bk .
I The size grl of the smallest such grammar is another

measure.
I It obviously holds grl ≤ g.
I In T = an it holds g, zno = Ω(grl log n).
I In some texts, grl = Ω(zno log n/ log log n) [Bille et al. 2017].

I Thue-Morse sequences, 01, 01 10, 0110 1001, ...
I Differential Thue-Morse, +, +=−, +=−+−=+, ...

I In such family, g = grl .
I They combine it with the result of Charikar et al.
I They obtain grl = Ω(log2 n/ log log n) and zno = O(log n).

I The same proof shows that grl = Ω(ze log n/ log log n).

Run-length grammars

I They expand grammars by allowing rules A→ Bk .
I The size grl of the smallest such grammar is another

measure.
I It obviously holds grl ≤ g.
I In T = an it holds g, zno = Ω(grl log n).
I In some texts, grl = Ω(zno log n/ log log n) [Bille et al. 2017].

I Thue-Morse sequences, 01, 01 10, 0110 1001, ...
I Differential Thue-Morse, +, +=−, +=−+−=+, ...
I In such family, g = grl .

I They combine it with the result of Charikar et al.
I They obtain grl = Ω(log2 n/ log log n) and zno = O(log n).

I The same proof shows that grl = Ω(ze log n/ log log n).

Run-length grammars

I They expand grammars by allowing rules A→ Bk .
I The size grl of the smallest such grammar is another

measure.
I It obviously holds grl ≤ g.
I In T = an it holds g, zno = Ω(grl log n).
I In some texts, grl = Ω(zno log n/ log log n) [Bille et al. 2017].

I Thue-Morse sequences, 01, 01 10, 0110 1001, ...
I Differential Thue-Morse, +, +=−, +=−+−=+, ...
I In such family, g = grl .
I They combine it with the result of Charikar et al.

I They obtain grl = Ω(log2 n/ log log n) and zno = O(log n).
I The same proof shows that grl = Ω(ze log n/ log log n).

Run-length grammars

I They expand grammars by allowing rules A→ Bk .
I The size grl of the smallest such grammar is another

measure.
I It obviously holds grl ≤ g.
I In T = an it holds g, zno = Ω(grl log n).
I In some texts, grl = Ω(zno log n/ log log n) [Bille et al. 2017].

I Thue-Morse sequences, 01, 01 10, 0110 1001, ...
I Differential Thue-Morse, +, +=−, +=−+−=+, ...
I In such family, g = grl .
I They combine it with the result of Charikar et al.
I They obtain grl = Ω(log2 n/ log log n) and zno = O(log n).

I The same proof shows that grl = Ω(ze log n/ log log n).

Run-length grammars

I They expand grammars by allowing rules A→ Bk .
I The size grl of the smallest such grammar is another

measure.
I It obviously holds grl ≤ g.
I In T = an it holds g, zno = Ω(grl log n).
I In some texts, grl = Ω(zno log n/ log log n) [Bille et al. 2017].

I Thue-Morse sequences, 01, 01 10, 0110 1001, ...
I Differential Thue-Morse, +, +=−, +=−+−=+, ...
I In such family, g = grl .
I They combine it with the result of Charikar et al.
I They obtain grl = Ω(log2 n/ log log n) and zno = O(log n).

I The same proof shows that grl = Ω(ze log n/ log log n).

More relations with grl

I Gagie, N., and Prezza [2018], corrected in N., Ochoa, and
Prezza [2021].

I They define a locally consistent run-length grammar to
prove grl = O(b log(n/b)).

I It is analyzed by considering an underlying bidirectional
macro sheme.

I They show that new nonterminals are formed near block
boundaries only.

More relations with grl

I Gagie, N., and Prezza [2018], corrected in N., Ochoa, and
Prezza [2021].

I They define a locally consistent run-length grammar to
prove grl = O(b log(n/b)).

I It is analyzed by considering an underlying bidirectional
macro sheme.

I They show that new nonterminals are formed near block
boundaries only.

More relations with grl

I Gagie, N., and Prezza [2018], corrected in N., Ochoa, and
Prezza [2021].

I They define a locally consistent run-length grammar to
prove grl = O(b log(n/b)).
I It is analyzed by considering an underlying bidirectional

macro sheme.

I They show that new nonterminals are formed near block
boundaries only.

More relations with grl

I Gagie, N., and Prezza [2018], corrected in N., Ochoa, and
Prezza [2021].

I They define a locally consistent run-length grammar to
prove grl = O(b log(n/b)).
I It is analyzed by considering an underlying bidirectional

macro sheme.
I They show that new nonterminals are formed near block

boundaries only.

More relations with grl

I Gagie, N., and Prezza [2018], corrected in N., Ochoa, and
Prezza [2021].

I They define a locally consistent run-length grammar to
prove grl = O(b log(n/b)).
I It is analyzed by considering an underlying bidirectional

macro sheme.
I They show that new nonterminals are formed near block

boundaries only.

l b raa a l a a b a r d a $a

A B

C A

l

A B C D

More relations with grl

I Gagie, N., and Prezza [2018], corrected in N., Ochoa, and
Prezza [2021].

I They define a locally consistent run-length grammar to
prove grl = O(b log(n/b)).
I It is analyzed by considering an underlying bidirectional

macro sheme.
I They show that new nonterminals are formed near block

boundaries only.

l b raa a l a a b a r d a $a

A B

E F

l

A DCBA

E

C

A
2

More relations with grl

I They (easily) prove z = O(grl), thus the bound we already
saw, z = O(b log(n/b)).

B

AAA A A

Accessing run-length grammars

I It is unknown if one can balance run-length grammars.

I But Bille et al. [2011] had shown how to provide
logarithmic access time on arbitrary grammars.

I Christiansen et al. [2020] generalized the result to
run-length grammars.

I So one can access any T [i ..i + `] within O(grl) space in
time O(log n + `).

Accessing run-length grammars

I It is unknown if one can balance run-length grammars.
I But Bille et al. [2011] had shown how to provide

logarithmic access time on arbitrary grammars.

I Christiansen et al. [2020] generalized the result to
run-length grammars.

I So one can access any T [i ..i + `] within O(grl) space in
time O(log n + `).

Accessing run-length grammars

I It is unknown if one can balance run-length grammars.
I But Bille et al. [2011] had shown how to provide

logarithmic access time on arbitrary grammars.
I Christiansen et al. [2020] generalized the result to

run-length grammars.

I So one can access any T [i ..i + `] within O(grl) space in
time O(log n + `).

Accessing run-length grammars

I It is unknown if one can balance run-length grammars.
I But Bille et al. [2011] had shown how to provide

logarithmic access time on arbitrary grammars.
I Christiansen et al. [2020] generalized the result to

run-length grammars.
I So one can access any T [i ..i + `] within O(grl) space in

time O(log n + `).

Collage systems

I In 2003, Kida et al. invented collage systems.

I Collage systems combine run-length grammars with
composition systems.

I Permit rules of the form A→ Bk (repetitions).
I Permit rules of the form A→ B[t] and A→[t]B (prefix/suffix

truncation).

I The size c ≤ grl of the smallest collage system is another
measure.

I Not known how to find c nor how to approximate it.
I Not much popular.

Collage systems

I In 2003, Kida et al. invented collage systems.
I Collage systems combine run-length grammars with

composition systems.

I Permit rules of the form A→ Bk (repetitions).
I Permit rules of the form A→ B[t] and A→[t]B (prefix/suffix

truncation).
I The size c ≤ grl of the smallest collage system is another

measure.
I Not known how to find c nor how to approximate it.
I Not much popular.

Collage systems

I In 2003, Kida et al. invented collage systems.
I Collage systems combine run-length grammars with

composition systems.
I Permit rules of the form A→ Bk (repetitions).

I Permit rules of the form A→ B[t] and A→[t]B (prefix/suffix
truncation).

I The size c ≤ grl of the smallest collage system is another
measure.

I Not known how to find c nor how to approximate it.
I Not much popular.

Collage systems

I In 2003, Kida et al. invented collage systems.
I Collage systems combine run-length grammars with

composition systems.
I Permit rules of the form A→ Bk (repetitions).
I Permit rules of the form A→ B[t] and A→[t]B (prefix/suffix

truncation).

I The size c ≤ grl of the smallest collage system is another
measure.

I Not known how to find c nor how to approximate it.
I Not much popular.

Collage systems

I In 2003, Kida et al. invented collage systems.
I Collage systems combine run-length grammars with

composition systems.
I Permit rules of the form A→ Bk (repetitions).
I Permit rules of the form A→ B[t] and A→[t]B (prefix/suffix

truncation).
I The size c ≤ grl of the smallest collage system is another

measure.

I Not known how to find c nor how to approximate it.
I Not much popular.

Collage systems

I In 2003, Kida et al. invented collage systems.
I Collage systems combine run-length grammars with

composition systems.
I Permit rules of the form A→ Bk (repetitions).
I Permit rules of the form A→ B[t] and A→[t]B (prefix/suffix

truncation).
I The size c ≤ grl of the smallest collage system is another

measure.
I Not known how to find c nor how to approximate it.

I Not much popular.

Collage systems

I In 2003, Kida et al. invented collage systems.
I Collage systems combine run-length grammars with

composition systems.
I Permit rules of the form A→ Bk (repetitions).
I Permit rules of the form A→ B[t] and A→[t]B (prefix/suffix

truncation).
I The size c ≤ grl of the smallest collage system is another

measure.
I Not known how to find c nor how to approximate it.
I Not much popular.

Collage systems

S A d a $B B

a l b raa a l a a b a r d a $l

A

BA a l

B B

A ba a r

A A
g = 13

a l b raa a l a a b a r d a $l

A

BA a l

B B

A ba a r

A A

12c =

[6]

2

S $adBB
[6]

Collage systems

S A d a $B B

a l b raa a l a a b a r d a $l

A

BA a l

B B

A ba a r

A A
g = 13

a l b raa a l a a b a r d a $l

A

BA a l

B B

A ba a r

A A

12c =

[6]

2

S $adBB
[6]

Relations with collage systems
N., Ochoa, Prezza [2021] proved b = O(c)
I From run-length grammar trees to collage systems.

I It chooses leftmost (non-trimmed) node A to be internal.
I All other trimmed/non-trimmed occurrences are leaves.
I Text positions are ordered by their leaf creation time.
I Then the blocks always point earlier in time.

a l b raa a l a a b a r d a $l

A

B

A A

[6]

A
2

B

S

Relations with collage systems
N., Ochoa, Prezza [2021] proved b = O(c)
I From run-length grammar trees to collage systems.
I It chooses leftmost (non-trimmed) node A to be internal.

I All other trimmed/non-trimmed occurrences are leaves.
I Text positions are ordered by their leaf creation time.
I Then the blocks always point earlier in time.

a l b raa a l a a b a r d a $l

A

B

A A

[6]

A
2

B

S

Relations with collage systems
N., Ochoa, Prezza [2021] proved b = O(c)
I From run-length grammar trees to collage systems.
I It chooses leftmost (non-trimmed) node A to be internal.
I All other trimmed/non-trimmed occurrences are leaves.

I Text positions are ordered by their leaf creation time.
I Then the blocks always point earlier in time.

a l b raa a l a a b a r d a $l

A

B

A A

[6]

A
2

B

S

Relations with collage systems
N., Ochoa, Prezza [2021] proved b = O(c)
I From run-length grammar trees to collage systems.
I It chooses leftmost (non-trimmed) node A to be internal.
I All other trimmed/non-trimmed occurrences are leaves.
I Text positions are ordered by their leaf creation time.

I Then the blocks always point earlier in time.

a l b raa a l a a b a r d a $l

A

B

A A

[6]

A
2

B

S

Relations with collage systems
N., Ochoa, Prezza [2021] proved b = O(c)
I From run-length grammar trees to collage systems.
I It chooses leftmost (non-trimmed) node A to be internal.
I All other trimmed/non-trimmed occurrences are leaves.
I Text positions are ordered by their leaf creation time.
I Then the blocks always point earlier in time.

a l b raa a l a a b a r d a $l

A

B

A A

[6]

A
2

B

S

Relations with collage systems

N., Ochoa, Prezza [2021] proved c = O(z)
I Let Ti be the initial symbol up to phrase i .

I If the next phrase is a substring of Ti , we extract it with a
prefix and a suffix rule.

I Self-referential phrases are handled with run-length rules.

T
1

T
2

T
3

T
4

T
5

T
6

T
7

T
6

P
7

T
7

P
8

S
8

T
8

T
9

T
10

T
11

T
1

T
1

T
1

a l b raa a l a l b a r d a $

[3] [6]

[5]

a

Relations with collage systems

N., Ochoa, Prezza [2021] proved c = O(z)
I Let Ti be the initial symbol up to phrase i .
I If the next phrase is a substring of Ti , we extract it with a

prefix and a suffix rule.

I Self-referential phrases are handled with run-length rules.

T
1

T
2

T
3

T
4

T
5

T
6

T
7

T
6

P
7

T
7

P
8

S
8

T
8

T
9

T
10

T
11

T
1

T
1

T
1

a l b raa a l a l b a r d a $

[3] [6]

[5]

a

Relations with collage systems

N., Ochoa, Prezza [2021] proved c = O(z)
I Let Ti be the initial symbol up to phrase i .
I If the next phrase is a substring of Ti , we extract it with a

prefix and a suffix rule.
I Self-referential phrases are handled with run-length rules.

T
1

T
2

T
3

T
4

T
5

T
6

T
7

T
6

P
7

T
7

P
8

S
8

T
8

T
9

T
10

T
11

T
1

T
1

T
1

a l b raa a l a l b a r d a $

[3] [6]

[5]

a

Recap

g
rl

no
z

z log(n/z)

cb

g

b log(n/b)

end
z

e
z z log (n/z)

2

z

Runs in the Burrows-Wheeler Transform (BWT)

I Burrows and Wheeler had invented the BWT for text
compression in 1994.

I It is a permutation of T where we pick the characters
preceding the suffixes of the suffix array.

I It reaches high-order statistical entropy.
I It naturally groups symbols with similar contexts, and tends

to form long runs of equal symbols.
I The number r of those runs is another measure of

compressibility.

I Since the transformation is reversible, we can compress T
in O(r log n) bits.

I For repetitive texts, r is small [Mäkinen et al. 2008].

Runs in the Burrows-Wheeler Transform (BWT)

I Burrows and Wheeler had invented the BWT for text
compression in 1994.

I It is a permutation of T where we pick the characters
preceding the suffixes of the suffix array.

I It reaches high-order statistical entropy.
I It naturally groups symbols with similar contexts, and tends

to form long runs of equal symbols.
I The number r of those runs is another measure of

compressibility.

I Since the transformation is reversible, we can compress T
in O(r log n) bits.

I For repetitive texts, r is small [Mäkinen et al. 2008].

Runs in the Burrows-Wheeler Transform (BWT)

I Burrows and Wheeler had invented the BWT for text
compression in 1994.

I It is a permutation of T where we pick the characters
preceding the suffixes of the suffix array.

I It reaches high-order statistical entropy.

I It naturally groups symbols with similar contexts, and tends
to form long runs of equal symbols.

I The number r of those runs is another measure of
compressibility.

I Since the transformation is reversible, we can compress T
in O(r log n) bits.

I For repetitive texts, r is small [Mäkinen et al. 2008].

Runs in the Burrows-Wheeler Transform (BWT)

I Burrows and Wheeler had invented the BWT for text
compression in 1994.

I It is a permutation of T where we pick the characters
preceding the suffixes of the suffix array.

I It reaches high-order statistical entropy.
I It naturally groups symbols with similar contexts, and tends

to form long runs of equal symbols.

I The number r of those runs is another measure of
compressibility.

I Since the transformation is reversible, we can compress T
in O(r log n) bits.

I For repetitive texts, r is small [Mäkinen et al. 2008].

Runs in the Burrows-Wheeler Transform (BWT)

I Burrows and Wheeler had invented the BWT for text
compression in 1994.

I It is a permutation of T where we pick the characters
preceding the suffixes of the suffix array.

I It reaches high-order statistical entropy.
I It naturally groups symbols with similar contexts, and tends

to form long runs of equal symbols.
I The number r of those runs is another measure of

compressibility.

I Since the transformation is reversible, we can compress T
in O(r log n) bits.

I For repetitive texts, r is small [Mäkinen et al. 2008].

Runs in the Burrows-Wheeler Transform (BWT)

I Burrows and Wheeler had invented the BWT for text
compression in 1994.

I It is a permutation of T where we pick the characters
preceding the suffixes of the suffix array.

I It reaches high-order statistical entropy.
I It naturally groups symbols with similar contexts, and tends

to form long runs of equal symbols.
I The number r of those runs is another measure of

compressibility.
I Since the transformation is reversible, we can compress T

in O(r log n) bits.

I For repetitive texts, r is small [Mäkinen et al. 2008].

Runs in the Burrows-Wheeler Transform (BWT)

I Burrows and Wheeler had invented the BWT for text
compression in 1994.

I It is a permutation of T where we pick the characters
preceding the suffixes of the suffix array.

I It reaches high-order statistical entropy.
I It naturally groups symbols with similar contexts, and tends

to form long runs of equal symbols.
I The number r of those runs is another measure of

compressibility.
I Since the transformation is reversible, we can compress T

in O(r log n) bits.
I For repetitive texts, r is small [Mäkinen et al. 2008].

Runs in the Burrows-Wheeler Transform (BWT)
aa l b raa a l a a b a r dl$

da a l b raa a l a a b a rl$

la b a r a l a l a b a r a a$d

la b a r a a l b raa a l a$d

a l b raa a l a a b a r d al $

la l a b a r a a l b raa a$d

ra l a l a b a r a a l b aa$d

ba r a l a l a b a r a a l a$d

ba r a a l b raa a l a al$d

ab a r a l a l a b a r a a l$d

ab a r a a l b raa a l a l$d

ra a l b raa a l a a b al$d

l a b a r a l a l a b a r a a$d

al a b a r a a l b raa a l$d

al a l a b a r a a l b raa$d

ar a l a l a b a r a a l ba$d

ar a a l b raa a l a a bl$d

r =10

Runs in the Burrows-Wheeler Transform (BWT)

Good properties
I r is related to Shannon’s entropy [Mäkinen and N. 2005].

I It can be computed in O(n) time.
I Closely related with suffix arrays: efficient pattern matching

is enabled [Ferragina & Manzini 2000; Mäkinen & N. 2005;
Gagie, N., Prezza 2018].

Bad properties

I Larger in practice than most other measures.
I The value of r depends on the permutation of the alphabet.

I Gap factors of Ω(log n) can be obtained.
I NP-hard to find the best permutation [Bentley, Gibney,

Thankachan 2019].

I It is not known how to access T [i] within O(r) space.

Runs in the Burrows-Wheeler Transform (BWT)

Good properties
I r is related to Shannon’s entropy [Mäkinen and N. 2005].
I It can be computed in O(n) time.

I Closely related with suffix arrays: efficient pattern matching
is enabled [Ferragina & Manzini 2000; Mäkinen & N. 2005;
Gagie, N., Prezza 2018].

Bad properties

I Larger in practice than most other measures.
I The value of r depends on the permutation of the alphabet.

I Gap factors of Ω(log n) can be obtained.
I NP-hard to find the best permutation [Bentley, Gibney,

Thankachan 2019].

I It is not known how to access T [i] within O(r) space.

Runs in the Burrows-Wheeler Transform (BWT)

Good properties
I r is related to Shannon’s entropy [Mäkinen and N. 2005].
I It can be computed in O(n) time.
I Closely related with suffix arrays: efficient pattern matching

is enabled [Ferragina & Manzini 2000; Mäkinen & N. 2005;
Gagie, N., Prezza 2018].

Bad properties

I Larger in practice than most other measures.
I The value of r depends on the permutation of the alphabet.

I Gap factors of Ω(log n) can be obtained.
I NP-hard to find the best permutation [Bentley, Gibney,

Thankachan 2019].

I It is not known how to access T [i] within O(r) space.

Runs in the Burrows-Wheeler Transform (BWT)

Good properties
I r is related to Shannon’s entropy [Mäkinen and N. 2005].
I It can be computed in O(n) time.
I Closely related with suffix arrays: efficient pattern matching

is enabled [Ferragina & Manzini 2000; Mäkinen & N. 2005;
Gagie, N., Prezza 2018].

Bad properties
I Larger in practice than most other measures.

I The value of r depends on the permutation of the alphabet.

I Gap factors of Ω(log n) can be obtained.
I NP-hard to find the best permutation [Bentley, Gibney,

Thankachan 2019].

I It is not known how to access T [i] within O(r) space.

Runs in the Burrows-Wheeler Transform (BWT)

Good properties
I r is related to Shannon’s entropy [Mäkinen and N. 2005].
I It can be computed in O(n) time.
I Closely related with suffix arrays: efficient pattern matching

is enabled [Ferragina & Manzini 2000; Mäkinen & N. 2005;
Gagie, N., Prezza 2018].

Bad properties
I Larger in practice than most other measures.
I The value of r depends on the permutation of the alphabet.

I Gap factors of Ω(log n) can be obtained.
I NP-hard to find the best permutation [Bentley, Gibney,

Thankachan 2019].
I It is not known how to access T [i] within O(r) space.

Runs in the Burrows-Wheeler Transform (BWT)

Good properties
I r is related to Shannon’s entropy [Mäkinen and N. 2005].
I It can be computed in O(n) time.
I Closely related with suffix arrays: efficient pattern matching

is enabled [Ferragina & Manzini 2000; Mäkinen & N. 2005;
Gagie, N., Prezza 2018].

Bad properties
I Larger in practice than most other measures.
I The value of r depends on the permutation of the alphabet.

I Gap factors of Ω(log n) can be obtained.

I NP-hard to find the best permutation [Bentley, Gibney,
Thankachan 2019].

I It is not known how to access T [i] within O(r) space.

Runs in the Burrows-Wheeler Transform (BWT)

Good properties
I r is related to Shannon’s entropy [Mäkinen and N. 2005].
I It can be computed in O(n) time.
I Closely related with suffix arrays: efficient pattern matching

is enabled [Ferragina & Manzini 2000; Mäkinen & N. 2005;
Gagie, N., Prezza 2018].

Bad properties
I Larger in practice than most other measures.
I The value of r depends on the permutation of the alphabet.

I Gap factors of Ω(log n) can be obtained.
I NP-hard to find the best permutation [Bentley, Gibney,

Thankachan 2019].

I It is not known how to access T [i] within O(r) space.

Runs in the Burrows-Wheeler Transform (BWT)

Good properties
I r is related to Shannon’s entropy [Mäkinen and N. 2005].
I It can be computed in O(n) time.
I Closely related with suffix arrays: efficient pattern matching

is enabled [Ferragina & Manzini 2000; Mäkinen & N. 2005;
Gagie, N., Prezza 2018].

Bad properties
I Larger in practice than most other measures.
I The value of r depends on the permutation of the alphabet.

I Gap factors of Ω(log n) can be obtained.
I NP-hard to find the best permutation [Bentley, Gibney,

Thankachan 2019].
I It is not known how to access T [i] within O(r) space.

Relating the BWT runs

I Loosely upper bounded, r = O(z log z log(n/z)) [Kempa &
Kociumaka 2019].

I It can reach r = Θ(n), where r = Ω(g log n) [Belazzougui et
al. 2015; N. & Prezza 2019].

I On de Bruijn sequences, r = Θ(n) and z = O(n/ log n).
I The smallest grammar size is also g = O(n/ log n).

I There are families where z = Ω(r log n) [Prezza 2016].

I On Fibonacci strings, z = Θ(log n) and r = O(1).

I So r and z are incomparable.
I Yet, it can be proved that b = O(r) [Gagie, N., Prezza

2018].

Relating the BWT runs

I Loosely upper bounded, r = O(z log z log(n/z)) [Kempa &
Kociumaka 2019].

I It can reach r = Θ(n), where r = Ω(g log n) [Belazzougui et
al. 2015; N. & Prezza 2019].

I On de Bruijn sequences, r = Θ(n) and z = O(n/ log n).
I The smallest grammar size is also g = O(n/ log n).

I There are families where z = Ω(r log n) [Prezza 2016].

I On Fibonacci strings, z = Θ(log n) and r = O(1).

I So r and z are incomparable.
I Yet, it can be proved that b = O(r) [Gagie, N., Prezza

2018].

Relating the BWT runs

I Loosely upper bounded, r = O(z log z log(n/z)) [Kempa &
Kociumaka 2019].

I It can reach r = Θ(n), where r = Ω(g log n) [Belazzougui et
al. 2015; N. & Prezza 2019].
I On de Bruijn sequences, r = Θ(n) and z = O(n/ log n).

I The smallest grammar size is also g = O(n/ log n).
I There are families where z = Ω(r log n) [Prezza 2016].

I On Fibonacci strings, z = Θ(log n) and r = O(1).

I So r and z are incomparable.
I Yet, it can be proved that b = O(r) [Gagie, N., Prezza

2018].

Relating the BWT runs

I Loosely upper bounded, r = O(z log z log(n/z)) [Kempa &
Kociumaka 2019].

I It can reach r = Θ(n), where r = Ω(g log n) [Belazzougui et
al. 2015; N. & Prezza 2019].
I On de Bruijn sequences, r = Θ(n) and z = O(n/ log n).
I The smallest grammar size is also g = O(n/ log n).

I There are families where z = Ω(r log n) [Prezza 2016].

I On Fibonacci strings, z = Θ(log n) and r = O(1).

I So r and z are incomparable.
I Yet, it can be proved that b = O(r) [Gagie, N., Prezza

2018].

Relating the BWT runs

I Loosely upper bounded, r = O(z log z log(n/z)) [Kempa &
Kociumaka 2019].

I It can reach r = Θ(n), where r = Ω(g log n) [Belazzougui et
al. 2015; N. & Prezza 2019].
I On de Bruijn sequences, r = Θ(n) and z = O(n/ log n).
I The smallest grammar size is also g = O(n/ log n).

I There are families where z = Ω(r log n) [Prezza 2016].

I On Fibonacci strings, z = Θ(log n) and r = O(1).
I So r and z are incomparable.
I Yet, it can be proved that b = O(r) [Gagie, N., Prezza

2018].

Relating the BWT runs

I Loosely upper bounded, r = O(z log z log(n/z)) [Kempa &
Kociumaka 2019].

I It can reach r = Θ(n), where r = Ω(g log n) [Belazzougui et
al. 2015; N. & Prezza 2019].
I On de Bruijn sequences, r = Θ(n) and z = O(n/ log n).
I The smallest grammar size is also g = O(n/ log n).

I There are families where z = Ω(r log n) [Prezza 2016].
I On Fibonacci strings, z = Θ(log n) and r = O(1).

I So r and z are incomparable.
I Yet, it can be proved that b = O(r) [Gagie, N., Prezza

2018].

Relating the BWT runs

I Loosely upper bounded, r = O(z log z log(n/z)) [Kempa &
Kociumaka 2019].

I It can reach r = Θ(n), where r = Ω(g log n) [Belazzougui et
al. 2015; N. & Prezza 2019].
I On de Bruijn sequences, r = Θ(n) and z = O(n/ log n).
I The smallest grammar size is also g = O(n/ log n).

I There are families where z = Ω(r log n) [Prezza 2016].
I On Fibonacci strings, z = Θ(log n) and r = O(1).

I So r and z are incomparable.

I Yet, it can be proved that b = O(r) [Gagie, N., Prezza
2018].

Relating the BWT runs

I Loosely upper bounded, r = O(z log z log(n/z)) [Kempa &
Kociumaka 2019].

I It can reach r = Θ(n), where r = Ω(g log n) [Belazzougui et
al. 2015; N. & Prezza 2019].
I On de Bruijn sequences, r = Θ(n) and z = O(n/ log n).
I The smallest grammar size is also g = O(n/ log n).

I There are families where z = Ω(r log n) [Prezza 2016].
I On Fibonacci strings, z = Θ(log n) and r = O(1).

I So r and z are incomparable.
I Yet, it can be proved that b = O(r) [Gagie, N., Prezza

2018].

Relating the BWT runs

I They use locally consistent parsing again.

I The BWT runs induces a parsing of r phrases on T .
I They use it to build a bidirectional macro scheme of size

b = O(r).
I It has no cycles because the parsing is lexicographic:

I The source is lexicographically smaller than the target.

a l b raa a l a a b a r d al $

Relating the BWT runs

I They use locally consistent parsing again.
I The BWT runs induces a parsing of r phrases on T .

I They use it to build a bidirectional macro scheme of size
b = O(r).

I It has no cycles because the parsing is lexicographic:

I The source is lexicographically smaller than the target.

a l b raa a l a a b a r d al $

Relating the BWT runs

I They use locally consistent parsing again.
I The BWT runs induces a parsing of r phrases on T .
I They use it to build a bidirectional macro scheme of size

b = O(r).

I It has no cycles because the parsing is lexicographic:

I The source is lexicographically smaller than the target.

a l b raa a l a a b a r d al $

Relating the BWT runs

I They use locally consistent parsing again.
I The BWT runs induces a parsing of r phrases on T .
I They use it to build a bidirectional macro scheme of size

b = O(r).
I It has no cycles because the parsing is lexicographic:

I The source is lexicographically smaller than the target.

a l b raa a l a a b a r d al $

Relating the BWT runs

I They use locally consistent parsing again.
I The BWT runs induces a parsing of r phrases on T .
I They use it to build a bidirectional macro scheme of size

b = O(r).
I It has no cycles because the parsing is lexicographic:

I The source is lexicographically smaller than the target.

a l b raa a l a a b a r d al $

Lexicographic parsing

I N., Ochoa, Prezza [2021] define a new measure v ≤ r :

I This is the size of the smallest lexicographic parse.
I They show how to compute v in linear time.

I While z preserves text order, v preserves suffix array order

Good properties (wrt z)

I Similar compression ratios in many cases.
I Better formal guarantees, e.g. v ≤ r .
I Similarly efficient compression/decompression.

Bad properties (wrt z)

I Only clearly better compression on the Fibonacci words.
I Worse compression on versions with cumulative edits.
I It also varies upon symbol remappings.

Lexicographic parsing

I N., Ochoa, Prezza [2021] define a new measure v ≤ r :
I This is the size of the smallest lexicographic parse.

I They show how to compute v in linear time.
I While z preserves text order, v preserves suffix array order

Good properties (wrt z)

I Similar compression ratios in many cases.
I Better formal guarantees, e.g. v ≤ r .
I Similarly efficient compression/decompression.

Bad properties (wrt z)

I Only clearly better compression on the Fibonacci words.
I Worse compression on versions with cumulative edits.
I It also varies upon symbol remappings.

Lexicographic parsing

I N., Ochoa, Prezza [2021] define a new measure v ≤ r :
I This is the size of the smallest lexicographic parse.
I They show how to compute v in linear time.

I While z preserves text order, v preserves suffix array order

Good properties (wrt z)

I Similar compression ratios in many cases.
I Better formal guarantees, e.g. v ≤ r .
I Similarly efficient compression/decompression.

Bad properties (wrt z)

I Only clearly better compression on the Fibonacci words.
I Worse compression on versions with cumulative edits.
I It also varies upon symbol remappings.

Lexicographic parsing

I N., Ochoa, Prezza [2021] define a new measure v ≤ r :
I This is the size of the smallest lexicographic parse.
I They show how to compute v in linear time.

I While z preserves text order, v preserves suffix array order

Good properties (wrt z)

I Similar compression ratios in many cases.
I Better formal guarantees, e.g. v ≤ r .
I Similarly efficient compression/decompression.

Bad properties (wrt z)

I Only clearly better compression on the Fibonacci words.
I Worse compression on versions with cumulative edits.
I It also varies upon symbol remappings.

Lexicographic parsing

I N., Ochoa, Prezza [2021] define a new measure v ≤ r :
I This is the size of the smallest lexicographic parse.
I They show how to compute v in linear time.

I While z preserves text order, v preserves suffix array order

Good properties (wrt z)
I Similar compression ratios in many cases.

I Better formal guarantees, e.g. v ≤ r .
I Similarly efficient compression/decompression.

Bad properties (wrt z)

I Only clearly better compression on the Fibonacci words.
I Worse compression on versions with cumulative edits.
I It also varies upon symbol remappings.

Lexicographic parsing

I N., Ochoa, Prezza [2021] define a new measure v ≤ r :
I This is the size of the smallest lexicographic parse.
I They show how to compute v in linear time.

I While z preserves text order, v preserves suffix array order

Good properties (wrt z)
I Similar compression ratios in many cases.
I Better formal guarantees, e.g. v ≤ r .

I Similarly efficient compression/decompression.

Bad properties (wrt z)

I Only clearly better compression on the Fibonacci words.
I Worse compression on versions with cumulative edits.
I It also varies upon symbol remappings.

Lexicographic parsing

I N., Ochoa, Prezza [2021] define a new measure v ≤ r :
I This is the size of the smallest lexicographic parse.
I They show how to compute v in linear time.

I While z preserves text order, v preserves suffix array order

Good properties (wrt z)
I Similar compression ratios in many cases.
I Better formal guarantees, e.g. v ≤ r .
I Similarly efficient compression/decompression.

Bad properties (wrt z)

I Only clearly better compression on the Fibonacci words.
I Worse compression on versions with cumulative edits.
I It also varies upon symbol remappings.

Lexicographic parsing

I N., Ochoa, Prezza [2021] define a new measure v ≤ r :
I This is the size of the smallest lexicographic parse.
I They show how to compute v in linear time.

I While z preserves text order, v preserves suffix array order

Good properties (wrt z)
I Similar compression ratios in many cases.
I Better formal guarantees, e.g. v ≤ r .
I Similarly efficient compression/decompression.

Bad properties (wrt z)
I Only clearly better compression on the Fibonacci words.

I Worse compression on versions with cumulative edits.
I It also varies upon symbol remappings.

Lexicographic parsing

I N., Ochoa, Prezza [2021] define a new measure v ≤ r :
I This is the size of the smallest lexicographic parse.
I They show how to compute v in linear time.

I While z preserves text order, v preserves suffix array order

Good properties (wrt z)
I Similar compression ratios in many cases.
I Better formal guarantees, e.g. v ≤ r .
I Similarly efficient compression/decompression.

Bad properties (wrt z)
I Only clearly better compression on the Fibonacci words.
I Worse compression on versions with cumulative edits.

I It also varies upon symbol remappings.

Lexicographic parsing

I N., Ochoa, Prezza [2021] define a new measure v ≤ r :
I This is the size of the smallest lexicographic parse.
I They show how to compute v in linear time.

I While z preserves text order, v preserves suffix array order

Good properties (wrt z)
I Similar compression ratios in many cases.
I Better formal guarantees, e.g. v ≤ r .
I Similarly efficient compression/decompression.

Bad properties (wrt z)
I Only clearly better compression on the Fibonacci words.
I Worse compression on versions with cumulative edits.
I It also varies upon symbol remappings.

Relations with lexicographic parsing

I They show v = O(n/ logσ n), thus r = Ω(v log n) on de
Bruijn sequences.

I It also induces a bidirectional parse, so b = O(v).
I On odd Fibonacci words, it holds b = O(1) and

v = Θ(log n).
I Since in some texts z = Ω(r log n), also z = Ω(v log n).
I Further, v = O(grl)

I Like the proof of z, choosing the internal grammar tree
nodes as the lexicographically smallest.

I For run-length rules, one chooses A→ B · Bt−1 or
A→ Bt−1 · B.

I Unknown if z = o(v) for some text family.

Relations with lexicographic parsing

I They show v = O(n/ logσ n), thus r = Ω(v log n) on de
Bruijn sequences.

I It also induces a bidirectional parse, so b = O(v).

I On odd Fibonacci words, it holds b = O(1) and
v = Θ(log n).

I Since in some texts z = Ω(r log n), also z = Ω(v log n).
I Further, v = O(grl)

I Like the proof of z, choosing the internal grammar tree
nodes as the lexicographically smallest.

I For run-length rules, one chooses A→ B · Bt−1 or
A→ Bt−1 · B.

I Unknown if z = o(v) for some text family.

Relations with lexicographic parsing

I They show v = O(n/ logσ n), thus r = Ω(v log n) on de
Bruijn sequences.

I It also induces a bidirectional parse, so b = O(v).
I On odd Fibonacci words, it holds b = O(1) and

v = Θ(log n).

I Since in some texts z = Ω(r log n), also z = Ω(v log n).
I Further, v = O(grl)

I Like the proof of z, choosing the internal grammar tree
nodes as the lexicographically smallest.

I For run-length rules, one chooses A→ B · Bt−1 or
A→ Bt−1 · B.

I Unknown if z = o(v) for some text family.

Relations with lexicographic parsing

I They show v = O(n/ logσ n), thus r = Ω(v log n) on de
Bruijn sequences.

I It also induces a bidirectional parse, so b = O(v).
I On odd Fibonacci words, it holds b = O(1) and

v = Θ(log n).
I Since in some texts z = Ω(r log n), also z = Ω(v log n).

I Further, v = O(grl)

I Like the proof of z, choosing the internal grammar tree
nodes as the lexicographically smallest.

I For run-length rules, one chooses A→ B · Bt−1 or
A→ Bt−1 · B.

I Unknown if z = o(v) for some text family.

Relations with lexicographic parsing

I They show v = O(n/ logσ n), thus r = Ω(v log n) on de
Bruijn sequences.

I It also induces a bidirectional parse, so b = O(v).
I On odd Fibonacci words, it holds b = O(1) and

v = Θ(log n).
I Since in some texts z = Ω(r log n), also z = Ω(v log n).
I Further, v = O(grl)

I Like the proof of z, choosing the internal grammar tree
nodes as the lexicographically smallest.

I For run-length rules, one chooses A→ B · Bt−1 or
A→ Bt−1 · B.

I Unknown if z = o(v) for some text family.

Relations with lexicographic parsing

I They show v = O(n/ logσ n), thus r = Ω(v log n) on de
Bruijn sequences.

I It also induces a bidirectional parse, so b = O(v).
I On odd Fibonacci words, it holds b = O(1) and

v = Θ(log n).
I Since in some texts z = Ω(r log n), also z = Ω(v log n).
I Further, v = O(grl)

I Like the proof of z, choosing the internal grammar tree
nodes as the lexicographically smallest.

I For run-length rules, one chooses A→ B · Bt−1 or
A→ Bt−1 · B.

I Unknown if z = o(v) for some text family.

Relations with lexicographic parsing

I They show v = O(n/ logσ n), thus r = Ω(v log n) on de
Bruijn sequences.

I It also induces a bidirectional parse, so b = O(v).
I On odd Fibonacci words, it holds b = O(1) and

v = Θ(log n).
I Since in some texts z = Ω(r log n), also z = Ω(v log n).
I Further, v = O(grl)

I Like the proof of z, choosing the internal grammar tree
nodes as the lexicographically smallest.

I For run-length rules, one chooses A→ B · Bt−1 or
A→ Bt−1 · B.

I Unknown if z = o(v) for some text family.

Relations with lexicographic parsing

I They show v = O(n/ logσ n), thus r = Ω(v log n) on de
Bruijn sequences.

I It also induces a bidirectional parse, so b = O(v).
I On odd Fibonacci words, it holds b = O(1) and

v = Θ(log n).
I Since in some texts z = Ω(r log n), also z = Ω(v log n).
I Further, v = O(grl)

I Like the proof of z, choosing the internal grammar tree
nodes as the lexicographically smallest.

I For run-length rules, one chooses A→ B · Bt−1 or
A→ Bt−1 · B.

I Unknown if z = o(v) for some text family.

Recap

rv z log z log(n/z)

g
rl

no
z

z log(n/z)

cb

g

b log(n/b)

end
z

e
z z log (n/z)

2

z

Attractors
I In 2018, Kempa and Prezza invent the concept of attractor.

I The first measure designed as a lower bound, not ad-hoc.
I A set Γ of positions in T such that any substring of T has a

copy including an element of Γ.
I The size γ of the smallest attractor is the measure.

I They show that γ = O(min(b, c, v , z, zno, r ,grl ,g)).

Relations

I There is a string family where γ = O(1) and b = Ω(log n)
[Kutsukake et al. 2020, Bannai et al. 2021]

I Thue-Morse sequences, 01, 01 10, 0110 1001, ...
I So γ is not reachable via copy-paste methods.

I Spoiler: Kociumaka thinks he can prove g = O(γ log(n/γ)).

a l b raa a l a a b a r d a $l

 = γ 6

Attractors
I In 2018, Kempa and Prezza invent the concept of attractor.

I The first measure designed as a lower bound, not ad-hoc.

I A set Γ of positions in T such that any substring of T has a
copy including an element of Γ.

I The size γ of the smallest attractor is the measure.
I They show that γ = O(min(b, c, v , z, zno, r ,grl ,g)).

Relations

I There is a string family where γ = O(1) and b = Ω(log n)
[Kutsukake et al. 2020, Bannai et al. 2021]

I Thue-Morse sequences, 01, 01 10, 0110 1001, ...
I So γ is not reachable via copy-paste methods.

I Spoiler: Kociumaka thinks he can prove g = O(γ log(n/γ)).

a l b raa a l a a b a r d a $l

 = γ 6

Attractors
I In 2018, Kempa and Prezza invent the concept of attractor.

I The first measure designed as a lower bound, not ad-hoc.
I A set Γ of positions in T such that any substring of T has a

copy including an element of Γ.

I The size γ of the smallest attractor is the measure.
I They show that γ = O(min(b, c, v , z, zno, r ,grl ,g)).

Relations

I There is a string family where γ = O(1) and b = Ω(log n)
[Kutsukake et al. 2020, Bannai et al. 2021]

I Thue-Morse sequences, 01, 01 10, 0110 1001, ...
I So γ is not reachable via copy-paste methods.

I Spoiler: Kociumaka thinks he can prove g = O(γ log(n/γ)).

a l b raa a l a a b a r d a $l

 = γ 6

Attractors
I In 2018, Kempa and Prezza invent the concept of attractor.

I The first measure designed as a lower bound, not ad-hoc.
I A set Γ of positions in T such that any substring of T has a

copy including an element of Γ.
I The size γ of the smallest attractor is the measure.

I They show that γ = O(min(b, c, v , z, zno, r ,grl ,g)).

Relations

I There is a string family where γ = O(1) and b = Ω(log n)
[Kutsukake et al. 2020, Bannai et al. 2021]

I Thue-Morse sequences, 01, 01 10, 0110 1001, ...
I So γ is not reachable via copy-paste methods.

I Spoiler: Kociumaka thinks he can prove g = O(γ log(n/γ)).

a l b raa a l a a b a r d a $l

 = γ 6

Attractors
I In 2018, Kempa and Prezza invent the concept of attractor.

I The first measure designed as a lower bound, not ad-hoc.
I A set Γ of positions in T such that any substring of T has a

copy including an element of Γ.
I The size γ of the smallest attractor is the measure.

I They show that γ = O(min(b, c, v , z, zno, r ,grl ,g)).

Relations

I There is a string family where γ = O(1) and b = Ω(log n)
[Kutsukake et al. 2020, Bannai et al. 2021]

I Thue-Morse sequences, 01, 01 10, 0110 1001, ...
I So γ is not reachable via copy-paste methods.

I Spoiler: Kociumaka thinks he can prove g = O(γ log(n/γ)).

a l b raa a l a a b a r d a $l

 = γ 6

Attractors
I In 2018, Kempa and Prezza invent the concept of attractor.

I The first measure designed as a lower bound, not ad-hoc.
I A set Γ of positions in T such that any substring of T has a

copy including an element of Γ.
I The size γ of the smallest attractor is the measure.

I They show that γ = O(min(b, c, v , z, zno, r ,grl ,g)).

Relations
I There is a string family where γ = O(1) and b = Ω(log n)

[Kutsukake et al. 2020, Bannai et al. 2021]

I Thue-Morse sequences, 01, 01 10, 0110 1001, ...
I So γ is not reachable via copy-paste methods.

I Spoiler: Kociumaka thinks he can prove g = O(γ log(n/γ)).

a l b raa a l a a b a r d a $l

 = γ 6

Attractors
I In 2018, Kempa and Prezza invent the concept of attractor.

I The first measure designed as a lower bound, not ad-hoc.
I A set Γ of positions in T such that any substring of T has a

copy including an element of Γ.
I The size γ of the smallest attractor is the measure.

I They show that γ = O(min(b, c, v , z, zno, r ,grl ,g)).

Relations
I There is a string family where γ = O(1) and b = Ω(log n)

[Kutsukake et al. 2020, Bannai et al. 2021]
I Thue-Morse sequences, 01, 01 10, 0110 1001, ...

I So γ is not reachable via copy-paste methods.
I Spoiler: Kociumaka thinks he can prove g = O(γ log(n/γ)).

a l b raa a l a a b a r d a $l

 = γ 6

Attractors
I In 2018, Kempa and Prezza invent the concept of attractor.

I The first measure designed as a lower bound, not ad-hoc.
I A set Γ of positions in T such that any substring of T has a

copy including an element of Γ.
I The size γ of the smallest attractor is the measure.

I They show that γ = O(min(b, c, v , z, zno, r ,grl ,g)).

Relations
I There is a string family where γ = O(1) and b = Ω(log n)

[Kutsukake et al. 2020, Bannai et al. 2021]
I Thue-Morse sequences, 01, 01 10, 0110 1001, ...
I So γ is not reachable via copy-paste methods.

I Spoiler: Kociumaka thinks he can prove g = O(γ log(n/γ)).

a l b raa a l a a b a r d a $l

 = γ 6

Attractors
I In 2018, Kempa and Prezza invent the concept of attractor.

I The first measure designed as a lower bound, not ad-hoc.
I A set Γ of positions in T such that any substring of T has a

copy including an element of Γ.
I The size γ of the smallest attractor is the measure.

I They show that γ = O(min(b, c, v , z, zno, r ,grl ,g)).

Relations
I There is a string family where γ = O(1) and b = Ω(log n)

[Kutsukake et al. 2020, Bannai et al. 2021]
I Thue-Morse sequences, 01, 01 10, 0110 1001, ...
I So γ is not reachable via copy-paste methods.

I Spoiler: Kociumaka thinks he can prove g = O(γ log(n/γ)).

a l b raa a l a a b a r d a $l

 = γ 6

Attractors

Good properties
I Elegant definition, no ad-hoc measure.

I Lower-bounds all the known reachable measures.
I Invariant upon string reversal and symbol mappings.
I In O(γ log(n/γ)) space one can provide access.

Bad properties

I Non-monotonic upon appends [Mantaci et al. 2021].
I It may double upon a single character edit on T [Akagi,

Funakoshi, Inenaga 2022].
I NP-hard to compute.
I Unreachable? Can one represent T in O(γ) space?

Attractors

Good properties
I Elegant definition, no ad-hoc measure.
I Lower-bounds all the known reachable measures.

I Invariant upon string reversal and symbol mappings.
I In O(γ log(n/γ)) space one can provide access.

Bad properties

I Non-monotonic upon appends [Mantaci et al. 2021].
I It may double upon a single character edit on T [Akagi,

Funakoshi, Inenaga 2022].
I NP-hard to compute.
I Unreachable? Can one represent T in O(γ) space?

Attractors

Good properties
I Elegant definition, no ad-hoc measure.
I Lower-bounds all the known reachable measures.
I Invariant upon string reversal and symbol mappings.

I In O(γ log(n/γ)) space one can provide access.

Bad properties

I Non-monotonic upon appends [Mantaci et al. 2021].
I It may double upon a single character edit on T [Akagi,

Funakoshi, Inenaga 2022].
I NP-hard to compute.
I Unreachable? Can one represent T in O(γ) space?

Attractors

Good properties
I Elegant definition, no ad-hoc measure.
I Lower-bounds all the known reachable measures.
I Invariant upon string reversal and symbol mappings.
I In O(γ log(n/γ)) space one can provide access.

Bad properties

I Non-monotonic upon appends [Mantaci et al. 2021].
I It may double upon a single character edit on T [Akagi,

Funakoshi, Inenaga 2022].
I NP-hard to compute.
I Unreachable? Can one represent T in O(γ) space?

Attractors

Good properties
I Elegant definition, no ad-hoc measure.
I Lower-bounds all the known reachable measures.
I Invariant upon string reversal and symbol mappings.
I In O(γ log(n/γ)) space one can provide access.

Bad properties
I Non-monotonic upon appends [Mantaci et al. 2021].

I It may double upon a single character edit on T [Akagi,
Funakoshi, Inenaga 2022].

I NP-hard to compute.
I Unreachable? Can one represent T in O(γ) space?

Attractors

Good properties
I Elegant definition, no ad-hoc measure.
I Lower-bounds all the known reachable measures.
I Invariant upon string reversal and symbol mappings.
I In O(γ log(n/γ)) space one can provide access.

Bad properties
I Non-monotonic upon appends [Mantaci et al. 2021].
I It may double upon a single character edit on T [Akagi,

Funakoshi, Inenaga 2022].

I NP-hard to compute.
I Unreachable? Can one represent T in O(γ) space?

Attractors

Good properties
I Elegant definition, no ad-hoc measure.
I Lower-bounds all the known reachable measures.
I Invariant upon string reversal and symbol mappings.
I In O(γ log(n/γ)) space one can provide access.

Bad properties
I Non-monotonic upon appends [Mantaci et al. 2021].
I It may double upon a single character edit on T [Akagi,

Funakoshi, Inenaga 2022].
I NP-hard to compute.

I Unreachable? Can one represent T in O(γ) space?

Attractors

Good properties
I Elegant definition, no ad-hoc measure.
I Lower-bounds all the known reachable measures.
I Invariant upon string reversal and symbol mappings.
I In O(γ log(n/γ)) space one can provide access.

Bad properties
I Non-monotonic upon appends [Mantaci et al. 2021].
I It may double upon a single character edit on T [Akagi,

Funakoshi, Inenaga 2022].
I NP-hard to compute.
I Unreachable? Can one represent T in O(γ) space?

Accessing with attractors

Block-tree-like structure

a l b raa a l a l b a r d aa

String complexity δ: the holy grail?
I A stricter lower bound [Raskhodnikova et al. 2013]:

δ = max{T (k)/k , k ≥ 1}

where T (k) is the number of distinct k -length contexts in T .

I It holds δ ≤ γ because T (k) ≤ γk for every k .
I It can be computed in O(n) time [Christiansen et al. 2020].
I Invariant upon reversals and symbol remappings.
I Monotonic upon symbol appends.
I It grows only by 1 upon a single character edit on T [Akagi,

Funakoshi, Inenaga 2022].

a l b raa a l a a b a r d a $l
T(1)/1 = 6

T(3)/3 = 3.3

T(2)/2 = 4.5

String complexity δ: the holy grail?
I A stricter lower bound [Raskhodnikova et al. 2013]:

δ = max{T (k)/k , k ≥ 1}

where T (k) is the number of distinct k -length contexts in T .
I It holds δ ≤ γ because T (k) ≤ γk for every k .

I It can be computed in O(n) time [Christiansen et al. 2020].
I Invariant upon reversals and symbol remappings.
I Monotonic upon symbol appends.
I It grows only by 1 upon a single character edit on T [Akagi,

Funakoshi, Inenaga 2022].

a l b raa a l a a b a r d a $l
T(1)/1 = 6

T(3)/3 = 3.3

T(2)/2 = 4.5

String complexity δ: the holy grail?
I A stricter lower bound [Raskhodnikova et al. 2013]:

δ = max{T (k)/k , k ≥ 1}

where T (k) is the number of distinct k -length contexts in T .
I It holds δ ≤ γ because T (k) ≤ γk for every k .
I It can be computed in O(n) time [Christiansen et al. 2020].

I Invariant upon reversals and symbol remappings.
I Monotonic upon symbol appends.
I It grows only by 1 upon a single character edit on T [Akagi,

Funakoshi, Inenaga 2022].

a l b raa a l a a b a r d a $l
T(1)/1 = 6

T(3)/3 = 3.3

T(2)/2 = 4.5

String complexity δ: the holy grail?
I A stricter lower bound [Raskhodnikova et al. 2013]:

δ = max{T (k)/k , k ≥ 1}

where T (k) is the number of distinct k -length contexts in T .
I It holds δ ≤ γ because T (k) ≤ γk for every k .
I It can be computed in O(n) time [Christiansen et al. 2020].
I Invariant upon reversals and symbol remappings.

I Monotonic upon symbol appends.
I It grows only by 1 upon a single character edit on T [Akagi,

Funakoshi, Inenaga 2022].

a l b raa a l a a b a r d a $l
T(1)/1 = 6

T(3)/3 = 3.3

T(2)/2 = 4.5

String complexity δ: the holy grail?
I A stricter lower bound [Raskhodnikova et al. 2013]:

δ = max{T (k)/k , k ≥ 1}

where T (k) is the number of distinct k -length contexts in T .
I It holds δ ≤ γ because T (k) ≤ γk for every k .
I It can be computed in O(n) time [Christiansen et al. 2020].
I Invariant upon reversals and symbol remappings.
I Monotonic upon symbol appends.

I It grows only by 1 upon a single character edit on T [Akagi,
Funakoshi, Inenaga 2022].

a l b raa a l a a b a r d a $l
T(1)/1 = 6

T(3)/3 = 3.3

T(2)/2 = 4.5

String complexity δ: the holy grail?
I A stricter lower bound [Raskhodnikova et al. 2013]:

δ = max{T (k)/k , k ≥ 1}

where T (k) is the number of distinct k -length contexts in T .
I It holds δ ≤ γ because T (k) ≤ γk for every k .
I It can be computed in O(n) time [Christiansen et al. 2020].
I Invariant upon reversals and symbol remappings.
I Monotonic upon symbol appends.
I It grows only by 1 upon a single character edit on T [Akagi,

Funakoshi, Inenaga 2022].
a l b raa a l a a b a r d a $l

T(1)/1 = 6

T(3)/3 = 3.3

T(2)/2 = 4.5

Relations on δ

Some upper bounds in terms of δ
I z = O(δ log(n/δ)) [Raskhodnikova et al. 2013], so this is

reachable.

I Block trees can be made of size O(δ log(n/δ)), so direct
access within that size [Kociumaka, N., Prezza 2020].

I Further, grl = O(δ log(n/δ)) [Kociumaka, N., Prezza 2021].

I Similar to the proof for g = O(b log(n/b)).
I “Pausing” long symbols to avoid them growing too fast.
I This cannot be achieved with g.

I It also holds r = O(δ log δ log(n/δ)) [Kociumaka & Kempa
2019] and ze = O(δ log2(n/δ)) [Kempa & Saha 2022].

Relations on δ

Some upper bounds in terms of δ
I z = O(δ log(n/δ)) [Raskhodnikova et al. 2013], so this is

reachable.
I Block trees can be made of size O(δ log(n/δ)), so direct

access within that size [Kociumaka, N., Prezza 2020].

I Further, grl = O(δ log(n/δ)) [Kociumaka, N., Prezza 2021].

I Similar to the proof for g = O(b log(n/b)).
I “Pausing” long symbols to avoid them growing too fast.
I This cannot be achieved with g.

I It also holds r = O(δ log δ log(n/δ)) [Kociumaka & Kempa
2019] and ze = O(δ log2(n/δ)) [Kempa & Saha 2022].

Relations on δ

Some upper bounds in terms of δ
I z = O(δ log(n/δ)) [Raskhodnikova et al. 2013], so this is

reachable.
I Block trees can be made of size O(δ log(n/δ)), so direct

access within that size [Kociumaka, N., Prezza 2020].
I Further, grl = O(δ log(n/δ)) [Kociumaka, N., Prezza 2021].

I Similar to the proof for g = O(b log(n/b)).
I “Pausing” long symbols to avoid them growing too fast.
I This cannot be achieved with g.

I It also holds r = O(δ log δ log(n/δ)) [Kociumaka & Kempa
2019] and ze = O(δ log2(n/δ)) [Kempa & Saha 2022].

Relations on δ

Some upper bounds in terms of δ
I z = O(δ log(n/δ)) [Raskhodnikova et al. 2013], so this is

reachable.
I Block trees can be made of size O(δ log(n/δ)), so direct

access within that size [Kociumaka, N., Prezza 2020].
I Further, grl = O(δ log(n/δ)) [Kociumaka, N., Prezza 2021].

I Similar to the proof for g = O(b log(n/b)).

I “Pausing” long symbols to avoid them growing too fast.
I This cannot be achieved with g.

I It also holds r = O(δ log δ log(n/δ)) [Kociumaka & Kempa
2019] and ze = O(δ log2(n/δ)) [Kempa & Saha 2022].

Relations on δ

Some upper bounds in terms of δ
I z = O(δ log(n/δ)) [Raskhodnikova et al. 2013], so this is

reachable.
I Block trees can be made of size O(δ log(n/δ)), so direct

access within that size [Kociumaka, N., Prezza 2020].
I Further, grl = O(δ log(n/δ)) [Kociumaka, N., Prezza 2021].

I Similar to the proof for g = O(b log(n/b)).
I “Pausing” long symbols to avoid them growing too fast.

I This cannot be achieved with g.
I It also holds r = O(δ log δ log(n/δ)) [Kociumaka & Kempa

2019] and ze = O(δ log2(n/δ)) [Kempa & Saha 2022].

Relations on δ

Some upper bounds in terms of δ
I z = O(δ log(n/δ)) [Raskhodnikova et al. 2013], so this is

reachable.
I Block trees can be made of size O(δ log(n/δ)), so direct

access within that size [Kociumaka, N., Prezza 2020].
I Further, grl = O(δ log(n/δ)) [Kociumaka, N., Prezza 2021].

I Similar to the proof for g = O(b log(n/b)).
I “Pausing” long symbols to avoid them growing too fast.
I This cannot be achieved with g.

I It also holds r = O(δ log δ log(n/δ)) [Kociumaka & Kempa
2019] and ze = O(δ log2(n/δ)) [Kempa & Saha 2022].

Relations on δ

Some upper bounds in terms of δ
I z = O(δ log(n/δ)) [Raskhodnikova et al. 2013], so this is

reachable.
I Block trees can be made of size O(δ log(n/δ)), so direct

access within that size [Kociumaka, N., Prezza 2020].
I Further, grl = O(δ log(n/δ)) [Kociumaka, N., Prezza 2021].

I Similar to the proof for g = O(b log(n/b)).
I “Pausing” long symbols to avoid them growing too fast.
I This cannot be achieved with g.

I It also holds r = O(δ log δ log(n/δ)) [Kociumaka & Kempa
2019] and ze = O(δ log2(n/δ)) [Kempa & Saha 2022].

More relations on δ

Lower bounds in terms of δ [Kociumaka, N., Prezza 2020]
I There are string families where γ = Ω(δ log n).

I On T = an where we put bs at positions 2i .
I b b ab aaab aaaaaaab aaaaaaaaaaaaaaab aa...
I It holds δ = O(1) and γ = Ω(log n).

I It is impossible to always represent T in O(δ) space.

I With a wider family where the positions of bs are perturbed.
I The family has 2Ω(log2 n) elements.
I Still δ = O(1), thus one needs Ω(δ log n) space.

I Furthermore, space O(δ log(n/δ)) is tight.

I For every n and δ, there are string families requiring that
many bits.

I Using a generalized variant of the above family.

More relations on δ

Lower bounds in terms of δ [Kociumaka, N., Prezza 2020]
I There are string families where γ = Ω(δ log n).

I On T = an where we put bs at positions 2i .

I b b ab aaab aaaaaaab aaaaaaaaaaaaaaab aa...
I It holds δ = O(1) and γ = Ω(log n).

I It is impossible to always represent T in O(δ) space.

I With a wider family where the positions of bs are perturbed.
I The family has 2Ω(log2 n) elements.
I Still δ = O(1), thus one needs Ω(δ log n) space.

I Furthermore, space O(δ log(n/δ)) is tight.

I For every n and δ, there are string families requiring that
many bits.

I Using a generalized variant of the above family.

More relations on δ

Lower bounds in terms of δ [Kociumaka, N., Prezza 2020]
I There are string families where γ = Ω(δ log n).

I On T = an where we put bs at positions 2i .
I b b ab aaab aaaaaaab aaaaaaaaaaaaaaab aa...

I It holds δ = O(1) and γ = Ω(log n).
I It is impossible to always represent T in O(δ) space.

I With a wider family where the positions of bs are perturbed.
I The family has 2Ω(log2 n) elements.
I Still δ = O(1), thus one needs Ω(δ log n) space.

I Furthermore, space O(δ log(n/δ)) is tight.

I For every n and δ, there are string families requiring that
many bits.

I Using a generalized variant of the above family.

More relations on δ

Lower bounds in terms of δ [Kociumaka, N., Prezza 2020]
I There are string families where γ = Ω(δ log n).

I On T = an where we put bs at positions 2i .
I b b ab aaab aaaaaaab aaaaaaaaaaaaaaab aa...
I It holds δ = O(1) and γ = Ω(log n).

I It is impossible to always represent T in O(δ) space.

I With a wider family where the positions of bs are perturbed.
I The family has 2Ω(log2 n) elements.
I Still δ = O(1), thus one needs Ω(δ log n) space.

I Furthermore, space O(δ log(n/δ)) is tight.

I For every n and δ, there are string families requiring that
many bits.

I Using a generalized variant of the above family.

More relations on δ

Lower bounds in terms of δ [Kociumaka, N., Prezza 2020]
I There are string families where γ = Ω(δ log n).

I On T = an where we put bs at positions 2i .
I b b ab aaab aaaaaaab aaaaaaaaaaaaaaab aa...
I It holds δ = O(1) and γ = Ω(log n).

I It is impossible to always represent T in O(δ) space.

I With a wider family where the positions of bs are perturbed.
I The family has 2Ω(log2 n) elements.
I Still δ = O(1), thus one needs Ω(δ log n) space.

I Furthermore, space O(δ log(n/δ)) is tight.

I For every n and δ, there are string families requiring that
many bits.

I Using a generalized variant of the above family.

More relations on δ

Lower bounds in terms of δ [Kociumaka, N., Prezza 2020]
I There are string families where γ = Ω(δ log n).

I On T = an where we put bs at positions 2i .
I b b ab aaab aaaaaaab aaaaaaaaaaaaaaab aa...
I It holds δ = O(1) and γ = Ω(log n).

I It is impossible to always represent T in O(δ) space.
I With a wider family where the positions of bs are perturbed.

I The family has 2Ω(log2 n) elements.
I Still δ = O(1), thus one needs Ω(δ log n) space.

I Furthermore, space O(δ log(n/δ)) is tight.

I For every n and δ, there are string families requiring that
many bits.

I Using a generalized variant of the above family.

More relations on δ

Lower bounds in terms of δ [Kociumaka, N., Prezza 2020]
I There are string families where γ = Ω(δ log n).

I On T = an where we put bs at positions 2i .
I b b ab aaab aaaaaaab aaaaaaaaaaaaaaab aa...
I It holds δ = O(1) and γ = Ω(log n).

I It is impossible to always represent T in O(δ) space.
I With a wider family where the positions of bs are perturbed.
I The family has 2Ω(log2 n) elements.

I Still δ = O(1), thus one needs Ω(δ log n) space.
I Furthermore, space O(δ log(n/δ)) is tight.

I For every n and δ, there are string families requiring that
many bits.

I Using a generalized variant of the above family.

More relations on δ

Lower bounds in terms of δ [Kociumaka, N., Prezza 2020]
I There are string families where γ = Ω(δ log n).

I On T = an where we put bs at positions 2i .
I b b ab aaab aaaaaaab aaaaaaaaaaaaaaab aa...
I It holds δ = O(1) and γ = Ω(log n).

I It is impossible to always represent T in O(δ) space.
I With a wider family where the positions of bs are perturbed.
I The family has 2Ω(log2 n) elements.
I Still δ = O(1), thus one needs Ω(δ log n) space.

I Furthermore, space O(δ log(n/δ)) is tight.

I For every n and δ, there are string families requiring that
many bits.

I Using a generalized variant of the above family.

More relations on δ

Lower bounds in terms of δ [Kociumaka, N., Prezza 2020]
I There are string families where γ = Ω(δ log n).

I On T = an where we put bs at positions 2i .
I b b ab aaab aaaaaaab aaaaaaaaaaaaaaab aa...
I It holds δ = O(1) and γ = Ω(log n).

I It is impossible to always represent T in O(δ) space.
I With a wider family where the positions of bs are perturbed.
I The family has 2Ω(log2 n) elements.
I Still δ = O(1), thus one needs Ω(δ log n) space.

I Furthermore, space O(δ log(n/δ)) is tight.

I For every n and δ, there are string families requiring that
many bits.

I Using a generalized variant of the above family.

More relations on δ

Lower bounds in terms of δ [Kociumaka, N., Prezza 2020]
I There are string families where γ = Ω(δ log n).

I On T = an where we put bs at positions 2i .
I b b ab aaab aaaaaaab aaaaaaaaaaaaaaab aa...
I It holds δ = O(1) and γ = Ω(log n).

I It is impossible to always represent T in O(δ) space.
I With a wider family where the positions of bs are perturbed.
I The family has 2Ω(log2 n) elements.
I Still δ = O(1), thus one needs Ω(δ log n) space.

I Furthermore, space O(δ log(n/δ)) is tight.
I For every n and δ, there are string families requiring that

many bits.

I Using a generalized variant of the above family.

More relations on δ

Lower bounds in terms of δ [Kociumaka, N., Prezza 2020]
I There are string families where γ = Ω(δ log n).

I On T = an where we put bs at positions 2i .
I b b ab aaab aaaaaaab aaaaaaaaaaaaaaab aa...
I It holds δ = O(1) and γ = Ω(log n).

I It is impossible to always represent T in O(δ) space.
I With a wider family where the positions of bs are perturbed.
I The family has 2Ω(log2 n) elements.
I Still δ = O(1), thus one needs Ω(δ log n) space.

I Furthermore, space O(δ log(n/δ)) is tight.
I For every n and δ, there are string families requiring that

many bits.
I Using a generalized variant of the above family.

Recap

rv

g
rl

no
z

cb

δ δlog(n/) γ γlog(n/)

δ log logδ δ(n/)

g

end
z

e
z

z

δ δlog (n/)
2

γδ

I z ≈ v ≈ 1.5–2.5 · δ
I g ≈ 3–6 · δ
I r ≈ 7–11 · δ

Where we are?

I b is the limit of copy-paste representations.

I grl and zend are the (known) limits of efficiently accessible
representations.

I γ is unreachable via copy-paste, perhaps with other
methods?

I δ is unreachable, δ log(n/δ) is accesible.
I Most measures within δ and δ log(n/δ).

rv

g
rl

no
z

cb

δ δlog(n/) γ γlog(n/)

δ log logδ δ(n/)

g

end
z

e
z

z

δ δlog (n/)
2

γδ

Where we are?

I b is the limit of copy-paste representations.
I grl and zend are the (known) limits of efficiently accessible

representations.

I γ is unreachable via copy-paste, perhaps with other
methods?

I δ is unreachable, δ log(n/δ) is accesible.
I Most measures within δ and δ log(n/δ).

rv

g
rl

no
z

cb

δ δlog(n/) γ γlog(n/)

δ log logδ δ(n/)

g

end
z

e
z

z

δ δlog (n/)
2

γδ

Where we are?

I b is the limit of copy-paste representations.
I grl and zend are the (known) limits of efficiently accessible

representations.
I γ is unreachable via copy-paste, perhaps with other

methods?

I δ is unreachable, δ log(n/δ) is accesible.
I Most measures within δ and δ log(n/δ).

rv

g
rl

no
z

cb

δ δlog(n/) γ γlog(n/)

δ log logδ δ(n/)

g

end
z

e
z

z

δ δlog (n/)
2

γδ

Where we are?

I b is the limit of copy-paste representations.
I grl and zend are the (known) limits of efficiently accessible

representations.
I γ is unreachable via copy-paste, perhaps with other

methods?
I δ is unreachable, δ log(n/δ) is accesible.

I Most measures within δ and δ log(n/δ).

rv

g
rl

no
z

cb

δ δlog(n/) γ γlog(n/)

δ log logδ δ(n/)

g

end
z

e
z

z

δ δlog (n/)
2

γδ

Where we are?

I b is the limit of copy-paste representations.
I grl and zend are the (known) limits of efficiently accessible

representations.
I γ is unreachable via copy-paste, perhaps with other

methods?
I δ is unreachable, δ log(n/δ) is accesible.
I Most measures within δ and δ log(n/δ).

rv

g
rl

no
z

cb

δ δlog(n/) γ γlog(n/)

δ log logδ δ(n/)

g

end
z

e
z

z

δ δlog (n/)
2

γδ

Where we are?

I Can we represent T in O(γ) space?

I Can we access T in O(zno) or O(r) space?
I Do we have the right repetitiveness measures?

I Is at least δ a final lower bound?

Where we are?

I Can we represent T in O(γ) space?
I Can we access T in O(zno) or O(r) space?

I Do we have the right repetitiveness measures?

I Is at least δ a final lower bound?

Where we are?

I Can we represent T in O(γ) space?
I Can we access T in O(zno) or O(r) space?
I Do we have the right repetitiveness measures?

I Is at least δ a final lower bound?

Where we are?

I Can we represent T in O(γ) space?
I Can we access T in O(zno) or O(r) space?
I Do we have the right repetitiveness measures?

I Is at least δ a final lower bound?

Maybe not...

I Iteration of morphisms as a mechanism to capture
repetitions.

I 0→ 01, 1→ 10 generates Thue-Morse words
I 0, 01, 0110, 01101001, ...
I Deterministic Lindenmayer systems are like grammars

without terminals.
I The production is simply terminated at some level of the

derivation tree.
I They are related with repetitiveness

I If all the rules have right-hand sides of the same length...
I Then the string has γ = O(log n) [Shallit 2020].

Maybe not...

I Iteration of morphisms as a mechanism to capture
repetitions.

I 0→ 01, 1→ 10 generates Thue-Morse words

I 0, 01, 0110, 01101001, ...
I Deterministic Lindenmayer systems are like grammars

without terminals.
I The production is simply terminated at some level of the

derivation tree.
I They are related with repetitiveness

I If all the rules have right-hand sides of the same length...
I Then the string has γ = O(log n) [Shallit 2020].

Maybe not...

I Iteration of morphisms as a mechanism to capture
repetitions.

I 0→ 01, 1→ 10 generates Thue-Morse words
I 0, 01, 0110, 01101001, ...

I Deterministic Lindenmayer systems are like grammars
without terminals.

I The production is simply terminated at some level of the
derivation tree.

I They are related with repetitiveness

I If all the rules have right-hand sides of the same length...
I Then the string has γ = O(log n) [Shallit 2020].

Maybe not...

I Iteration of morphisms as a mechanism to capture
repetitions.

I 0→ 01, 1→ 10 generates Thue-Morse words
I 0, 01, 0110, 01101001, ...
I Deterministic Lindenmayer systems are like grammars

without terminals.

I The production is simply terminated at some level of the
derivation tree.

I They are related with repetitiveness

I If all the rules have right-hand sides of the same length...
I Then the string has γ = O(log n) [Shallit 2020].

Maybe not...

I Iteration of morphisms as a mechanism to capture
repetitions.

I 0→ 01, 1→ 10 generates Thue-Morse words
I 0, 01, 0110, 01101001, ...
I Deterministic Lindenmayer systems are like grammars

without terminals.
I The production is simply terminated at some level of the

derivation tree.

I They are related with repetitiveness

I If all the rules have right-hand sides of the same length...
I Then the string has γ = O(log n) [Shallit 2020].

Maybe not...

I Iteration of morphisms as a mechanism to capture
repetitions.

I 0→ 01, 1→ 10 generates Thue-Morse words
I 0, 01, 0110, 01101001, ...
I Deterministic Lindenmayer systems are like grammars

without terminals.
I The production is simply terminated at some level of the

derivation tree.
I They are related with repetitiveness

I If all the rules have right-hand sides of the same length...
I Then the string has γ = O(log n) [Shallit 2020].

Maybe not...

I Iteration of morphisms as a mechanism to capture
repetitions.

I 0→ 01, 1→ 10 generates Thue-Morse words
I 0, 01, 0110, 01101001, ...
I Deterministic Lindenmayer systems are like grammars

without terminals.
I The production is simply terminated at some level of the

derivation tree.
I They are related with repetitiveness

I If all the rules have right-hand sides of the same length...

I Then the string has γ = O(log n) [Shallit 2020].

Maybe not...

I Iteration of morphisms as a mechanism to capture
repetitions.

I 0→ 01, 1→ 10 generates Thue-Morse words
I 0, 01, 0110, 01101001, ...
I Deterministic Lindenmayer systems are like grammars

without terminals.
I The production is simply terminated at some level of the

derivation tree.
I They are related with repetitiveness

I If all the rules have right-hand sides of the same length...
I Then the string has γ = O(log n) [Shallit 2020].

L-systems [N. & Urbina, 2021]

I A deterministic Lindenmayer system.

I Plus a desired pruning depth and string length.
I Let ` be the size of the smallest L-system generating T .
I We only have the upper bound ` = O(g).
I On Thue-Morse words:

I b = Θ(log n), γ = O(1),
I ` = O(1) beats any cut-and-paste method

I In some cases, ` = Ω(δ log n) because it is reachable.
I But it might also be that δ = Ω(` log n):

I Initial symbol 0, rules 0→ 001 and 1→ 1.
I 0, 001, 0010011, 001001100100111, ...
I It is shown to have δ = Ω(log n), with ` = O(1).
I Maybe ` captures better some repetitive structured texts?

L-systems [N. & Urbina, 2021]

I A deterministic Lindenmayer system.
I Plus a desired pruning depth and string length.

I Let ` be the size of the smallest L-system generating T .
I We only have the upper bound ` = O(g).
I On Thue-Morse words:

I b = Θ(log n), γ = O(1),
I ` = O(1) beats any cut-and-paste method

I In some cases, ` = Ω(δ log n) because it is reachable.
I But it might also be that δ = Ω(` log n):

I Initial symbol 0, rules 0→ 001 and 1→ 1.
I 0, 001, 0010011, 001001100100111, ...
I It is shown to have δ = Ω(log n), with ` = O(1).
I Maybe ` captures better some repetitive structured texts?

L-systems [N. & Urbina, 2021]

I A deterministic Lindenmayer system.
I Plus a desired pruning depth and string length.
I Let ` be the size of the smallest L-system generating T .

I We only have the upper bound ` = O(g).
I On Thue-Morse words:

I b = Θ(log n), γ = O(1),
I ` = O(1) beats any cut-and-paste method

I In some cases, ` = Ω(δ log n) because it is reachable.
I But it might also be that δ = Ω(` log n):

I Initial symbol 0, rules 0→ 001 and 1→ 1.
I 0, 001, 0010011, 001001100100111, ...
I It is shown to have δ = Ω(log n), with ` = O(1).
I Maybe ` captures better some repetitive structured texts?

L-systems [N. & Urbina, 2021]

I A deterministic Lindenmayer system.
I Plus a desired pruning depth and string length.
I Let ` be the size of the smallest L-system generating T .
I We only have the upper bound ` = O(g).

I On Thue-Morse words:

I b = Θ(log n), γ = O(1),
I ` = O(1) beats any cut-and-paste method

I In some cases, ` = Ω(δ log n) because it is reachable.
I But it might also be that δ = Ω(` log n):

I Initial symbol 0, rules 0→ 001 and 1→ 1.
I 0, 001, 0010011, 001001100100111, ...
I It is shown to have δ = Ω(log n), with ` = O(1).
I Maybe ` captures better some repetitive structured texts?

L-systems [N. & Urbina, 2021]

I A deterministic Lindenmayer system.
I Plus a desired pruning depth and string length.
I Let ` be the size of the smallest L-system generating T .
I We only have the upper bound ` = O(g).
I On Thue-Morse words:

I b = Θ(log n), γ = O(1),
I ` = O(1) beats any cut-and-paste method

I In some cases, ` = Ω(δ log n) because it is reachable.
I But it might also be that δ = Ω(` log n):

I Initial symbol 0, rules 0→ 001 and 1→ 1.
I 0, 001, 0010011, 001001100100111, ...
I It is shown to have δ = Ω(log n), with ` = O(1).
I Maybe ` captures better some repetitive structured texts?

L-systems [N. & Urbina, 2021]

I A deterministic Lindenmayer system.
I Plus a desired pruning depth and string length.
I Let ` be the size of the smallest L-system generating T .
I We only have the upper bound ` = O(g).
I On Thue-Morse words:

I b = Θ(log n), γ = O(1),

I ` = O(1) beats any cut-and-paste method
I In some cases, ` = Ω(δ log n) because it is reachable.
I But it might also be that δ = Ω(` log n):

I Initial symbol 0, rules 0→ 001 and 1→ 1.
I 0, 001, 0010011, 001001100100111, ...
I It is shown to have δ = Ω(log n), with ` = O(1).
I Maybe ` captures better some repetitive structured texts?

L-systems [N. & Urbina, 2021]

I A deterministic Lindenmayer system.
I Plus a desired pruning depth and string length.
I Let ` be the size of the smallest L-system generating T .
I We only have the upper bound ` = O(g).
I On Thue-Morse words:

I b = Θ(log n), γ = O(1),
I ` = O(1) beats any cut-and-paste method

I In some cases, ` = Ω(δ log n) because it is reachable.
I But it might also be that δ = Ω(` log n):

I Initial symbol 0, rules 0→ 001 and 1→ 1.
I 0, 001, 0010011, 001001100100111, ...
I It is shown to have δ = Ω(log n), with ` = O(1).
I Maybe ` captures better some repetitive structured texts?

L-systems [N. & Urbina, 2021]

I A deterministic Lindenmayer system.
I Plus a desired pruning depth and string length.
I Let ` be the size of the smallest L-system generating T .
I We only have the upper bound ` = O(g).
I On Thue-Morse words:

I b = Θ(log n), γ = O(1),
I ` = O(1) beats any cut-and-paste method

I In some cases, ` = Ω(δ log n) because it is reachable.

I But it might also be that δ = Ω(` log n):

I Initial symbol 0, rules 0→ 001 and 1→ 1.
I 0, 001, 0010011, 001001100100111, ...
I It is shown to have δ = Ω(log n), with ` = O(1).
I Maybe ` captures better some repetitive structured texts?

L-systems [N. & Urbina, 2021]

I A deterministic Lindenmayer system.
I Plus a desired pruning depth and string length.
I Let ` be the size of the smallest L-system generating T .
I We only have the upper bound ` = O(g).
I On Thue-Morse words:

I b = Θ(log n), γ = O(1),
I ` = O(1) beats any cut-and-paste method

I In some cases, ` = Ω(δ log n) because it is reachable.
I But it might also be that δ = Ω(` log n):

I Initial symbol 0, rules 0→ 001 and 1→ 1.
I 0, 001, 0010011, 001001100100111, ...
I It is shown to have δ = Ω(log n), with ` = O(1).
I Maybe ` captures better some repetitive structured texts?

L-systems [N. & Urbina, 2021]

I A deterministic Lindenmayer system.
I Plus a desired pruning depth and string length.
I Let ` be the size of the smallest L-system generating T .
I We only have the upper bound ` = O(g).
I On Thue-Morse words:

I b = Θ(log n), γ = O(1),
I ` = O(1) beats any cut-and-paste method

I In some cases, ` = Ω(δ log n) because it is reachable.
I But it might also be that δ = Ω(` log n):

I Initial symbol 0, rules 0→ 001 and 1→ 1.

I 0, 001, 0010011, 001001100100111, ...
I It is shown to have δ = Ω(log n), with ` = O(1).
I Maybe ` captures better some repetitive structured texts?

L-systems [N. & Urbina, 2021]

I A deterministic Lindenmayer system.
I Plus a desired pruning depth and string length.
I Let ` be the size of the smallest L-system generating T .
I We only have the upper bound ` = O(g).
I On Thue-Morse words:

I b = Θ(log n), γ = O(1),
I ` = O(1) beats any cut-and-paste method

I In some cases, ` = Ω(δ log n) because it is reachable.
I But it might also be that δ = Ω(` log n):

I Initial symbol 0, rules 0→ 001 and 1→ 1.
I 0, 001, 0010011, 001001100100111, ...

I It is shown to have δ = Ω(log n), with ` = O(1).
I Maybe ` captures better some repetitive structured texts?

L-systems [N. & Urbina, 2021]

I A deterministic Lindenmayer system.
I Plus a desired pruning depth and string length.
I Let ` be the size of the smallest L-system generating T .
I We only have the upper bound ` = O(g).
I On Thue-Morse words:

I b = Θ(log n), γ = O(1),
I ` = O(1) beats any cut-and-paste method

I In some cases, ` = Ω(δ log n) because it is reachable.
I But it might also be that δ = Ω(` log n):

I Initial symbol 0, rules 0→ 001 and 1→ 1.
I 0, 001, 0010011, 001001100100111, ...
I It is shown to have δ = Ω(log n), with ` = O(1).

I Maybe ` captures better some repetitive structured texts?

L-systems [N. & Urbina, 2021]

I A deterministic Lindenmayer system.
I Plus a desired pruning depth and string length.
I Let ` be the size of the smallest L-system generating T .
I We only have the upper bound ` = O(g).
I On Thue-Morse words:

I b = Θ(log n), γ = O(1),
I ` = O(1) beats any cut-and-paste method

I In some cases, ` = Ω(δ log n) because it is reachable.
I But it might also be that δ = Ω(` log n):

I Initial symbol 0, rules 0→ 001 and 1→ 1.
I 0, 001, 0010011, 001001100100111, ...
I It is shown to have δ = Ω(log n), with ` = O(1).
I Maybe ` captures better some repetitive structured texts?

Thanks for your attention!

