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INTRODUCTION



Block-based hybrid video coding

Coding framework for 
generations of image and 

video codec standards



Evolution of compression efficiency

Slide courtesy of B. Bross, “Versatile video coding (VVC ) on the final stretch”, ITU Workshop on “The future of media,” Geneva, Switzerland, 8 October 2019 

bandwidth reduction by ~50% 
at similar reconstruction quality 

between two generations 



AI-based image and video coding

• Enhancing/replacing a coding tool within the hybrid framework
 Intra coding, inter coding, loop filtering, etc. 

• End-to-end learning-based image and video compression

D. Minnen, J. Ballé, and G. Toderici. "Joint autoregressive and hierarchical priors for learned image compression." In Advances in Neural Information Processing Systems, pages 10771–10780, 2018.
G. Lu, W. Ouyang, D. Xu, X. Zhang, C. Cai, and Z. Gao, “DVC: an end-to-end deep video compression framework,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11006–11015, 2019.



Face video compression for video chat

We focus on coding of 
human face video, where we 
find much inherent structure 
and prior knowledge, such 

as their shape, composition, 
and movement



Model-based video compression

In the 1990’s, model-based video compression was studied for 
video telephony:  
• parameterized 3-D head model specifies shape and color of 

a person
• facial animation parameters (FAP’s) specifies motion and 

deformation in the temporal domain

P. Eisert, T. Wiegand, and B. Girod, “Model-aided coding: a new approach to incorporate facial animation into motion-compensated video coding,” IEEE Transactions on CSVT, vol. 10, no. 3, pp. 344–358, 2000



PART 1: 
THE PROMISE



Related work



A. Siarohin, et. al., “First order motion model for image animation,” Advances in Neural Information Processing Systems, vol. 32, pp. 7137–7147, 2019.

First order motion model (FOMM)

• Complex motions are represented using a set of keypoints & corresponding affine transformations
• Generator network combines the source image and the motion derived from the driving video
• Object in the source image is animated according to the motion of driving video



M. Oquab, et. al., “Low bandwidth video-chat compression using deep generative models,” in IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshop, 2021.

Low bandwidth video-chat compression

• Apply FOMM towards talking-head video compression
• Explore quality and bandwidth trade-offs for static landmarks (i.e., keypoints), dynamic landmarks or 

segmentation maps
• Runs real-time on mobile platform 



• Motion information represented using compact 3D keypoints
• Source image containing the target person’s appearance and driving video dictates the motion in the output
• 3D keypoints allows to rotate the head during synthesis 

Free-view neural talking-head synthesis

T.C. Wang, et. al., “One-shot free-view neural talking-head synthesis for video conferencing,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 10039–10049.



Going beyond keypoints

We aim to represent motion more efficiently and generate it more reliably
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Compact feature for temporal evolution (CFTE)



Inter frames
(256× 256) 

Key frame
(256× 256) 

Bitstream

Encoder

…

…
…

…

…

Compact Feature 
Extraction

VVC Encoding

Compact Feature
Compression 

CFTE encoder



CFTE decoder
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𝑀𝑀𝑜𝑜𝑜𝑜𝑜𝑜 𝑙𝑙𝑙𝑙𝑙𝑙 𝑖𝑖𝑜𝑜𝑛𝑛 = 𝑃𝑃2(𝑓𝑓𝑈𝑈−𝑁𝑁𝑁𝑁𝑁𝑁 (𝑜𝑜𝑜𝑜𝑛𝑛𝑜𝑜𝑐𝑐𝑁𝑁(𝐹𝐹𝑜𝑜𝑑𝑑𝑓𝑓 ,𝐷𝐷𝑖𝑖𝑓𝑓𝑓𝑓<𝐼𝐼,𝐾𝐾>))) 

CFTE work flow

Feature extraction

Sparse motion

Video frame 
generation

Dense motion & 
occlusion

𝐹𝐹𝑜𝑜𝑜𝑜𝑐𝑐𝑐𝑐 = 𝑔𝑔(𝐶𝐶𝑜𝑜𝑛𝑛𝐶𝐶 ,𝐺𝐺𝐷𝐷𝑁𝑁)(𝑓𝑓𝑈𝑈−𝑁𝑁𝑁𝑁𝑁𝑁 (𝜙𝜙(𝑋𝑋, 𝑙𝑙))) 

𝑀𝑀𝑙𝑙𝑐𝑐𝑐𝑐𝑠𝑠𝑙𝑙𝑁𝑁 = 𝐺𝐺𝐹𝐹𝑓𝑓𝑙𝑙𝑜𝑜𝑓𝑓 (𝐹𝐹�𝑜𝑜𝑜𝑜𝑐𝑐𝑐𝑐𝐾𝐾 ,𝐹𝐹�𝑜𝑜𝑜𝑜𝑐𝑐𝑐𝑐𝐼𝐼 ) 

𝑀𝑀𝑑𝑑𝑁𝑁𝑛𝑛𝑙𝑙𝑁𝑁 = 𝑃𝑃1(𝑓𝑓𝑈𝑈−𝑁𝑁𝑁𝑁𝑁𝑁 (𝑜𝑜𝑜𝑜𝑛𝑛𝑜𝑜𝑐𝑐𝑁𝑁(𝐹𝐹𝑜𝑜𝑑𝑑𝑓𝑓 ,𝐷𝐷𝑖𝑖𝑓𝑓𝑓𝑓<𝐼𝐼,𝐾𝐾>))) 

𝐹𝐹𝑜𝑜𝑑𝑑𝑓𝑓  

𝐷𝐷𝑖𝑖𝑓𝑓𝑓𝑓<𝐼𝐼,𝐾𝐾> = 𝜑𝜑�𝐹𝐹�𝑜𝑜𝑜𝑜𝑐𝑐𝑐𝑐𝐼𝐼 � − 𝜑𝜑(𝐹𝐹�𝑜𝑜𝑜𝑜𝑐𝑐𝑐𝑐𝐾𝐾 ) where

Coarse 
deformed frame

�̂�𝐼 = 𝑀𝑀𝑜𝑜𝑜𝑜𝑜𝑜𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑜𝑜𝑛𝑛 ⊙  𝑓𝑓𝑈𝑈−𝑁𝑁𝑁𝑁𝑁𝑁(𝐾𝐾,𝑀𝑀𝑑𝑑𝑁𝑁𝑛𝑛𝑙𝑙𝑁𝑁) 



Training loss

𝐿𝐿𝐷𝐷�𝐼𝐼, 𝐼𝐼� = � 𝐸𝐸𝐼𝐼~𝑃𝑃𝑔𝑔 �𝐷𝐷𝑖𝑖�𝐼𝐼��
𝑘𝑘

𝑖𝑖=1
−� 𝐸𝐸𝐼𝐼~𝑃𝑃𝑠𝑠 �𝐷𝐷𝑖𝑖(𝐼𝐼)�

𝑘𝑘

𝑖𝑖=1
 

𝐿𝐿𝐺𝐺�𝐼𝐼� = −� 𝐸𝐸𝐼𝐼~𝑃𝑃𝑔𝑔(𝐷𝐷𝑖𝑖(𝐼𝐼))
𝑘𝑘

𝑖𝑖=1
 

Perceptual loss

Adversarial loss

𝐿𝐿𝑐𝑐𝑁𝑁𝑠𝑠−𝑖𝑖𝑛𝑛𝑖𝑖𝑁𝑁𝑖𝑖𝑐𝑐𝑙𝑙 = �
1

𝐶𝐶𝑖𝑖 × 𝐻𝐻𝑖𝑖 × 𝑊𝑊𝑖𝑖
�𝑉𝑉𝐺𝐺𝐺𝐺𝑖𝑖�𝐹𝐹𝑜𝑜𝑑𝑑𝑓𝑓 � − 𝑉𝑉𝐺𝐺𝐺𝐺𝑖𝑖(𝜙𝜙(𝐼𝐼))�

𝑖𝑖

𝑛𝑛=1
 

𝐿𝐿𝑐𝑐𝑁𝑁𝑠𝑠 −𝑓𝑓𝑖𝑖𝑛𝑛𝑐𝑐𝑙𝑙 = �
1

𝐶𝐶𝑖𝑖 × 𝐻𝐻𝑖𝑖 × 𝑊𝑊𝑖𝑖
�𝑉𝑉𝐺𝐺𝐺𝐺𝑖𝑖�𝐼𝐼� − 𝑉𝑉𝐺𝐺𝐺𝐺𝑖𝑖(𝐼𝐼)�

𝑖𝑖

𝑛𝑛=1
 

Total loss 𝐿𝐿𝑁𝑁𝑜𝑜𝑁𝑁𝑐𝑐𝑙𝑙 = 𝜆𝜆𝑖𝑖𝑛𝑛𝑁𝑁𝑖𝑖 𝑐𝑐𝑙𝑙 ∙ 𝐿𝐿𝑐𝑐𝑁𝑁𝑠𝑠−𝑖𝑖𝑛𝑛𝑖𝑖𝑁𝑁 𝑖𝑖𝑐𝑐𝑙𝑙 + 𝜆𝜆𝑓𝑓𝑖𝑖𝑛𝑛𝑐𝑐 𝑙𝑙 ∙ 𝐿𝐿𝑐𝑐𝑁𝑁𝑠𝑠−𝑓𝑓𝑖𝑖𝑛𝑛𝑐𝑐𝑙𝑙 + 𝜆𝜆𝑐𝑐𝑑𝑑𝐶𝐶 ∙ (𝐿𝐿𝐺𝐺 + 𝐿𝐿𝐷𝐷)  



CFTE decoding flow visualization
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CFTE entropy coding
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Experimental results



Experimental settings

VVC anchor

• VTM-10.0, LDB configuration
• QPs {37, 42, 47, 52}

Generative methods

• First frame coded by VTM-10.0, QPs {37, 
42, 47, 52}

• FOMM based on  
https://github.com/AliaksandrSiarohin/first-
order-model

• Face_vid2vid from 
https://github.com/zhanglonghao1992/One-
Shot_Free-
View_Neural_Talking_Head_Synthesis

• Entropy coding of FOMM and Face_vid2vid 
keypoints are aligned with that of CFTE  

https://github.com/AliaksandrSiarohin/first-order-model
https://github.com/zhanglonghao1992/One-Shot_Free-View_Neural_Talking_Head_Synthesis


Test sequences

Cropped from open source database: https://ibug.doc.ic.ac.uk/resources/300-VW/ in RGB format

Resolution: 256x256

Frame rate: 25 fps    

Duration: 10 sec 

https://ibug.doc.ic.ac.uk/resources/300-VW/


Distortion metrics

• Conventional metrics: PSNR, SSIM
• Learning-based distortion metrics: 

• LPIPS: Learned Perceptual Image Patch Similarity 
• DISTS: Deep Image Structure and Texture Similarity

• All metrics calculated with the open-source implementation from
https://github.com/dingkeyan93/IQA-optimization

R. Zhang, et al. "The unreasonable effectiveness of deep features as a perceptual metric." Proceedings of the IEEE conference on computer vision and pattern recognition. 2018.
K. Ding, et. al., “Image quality assessment: Unifying structure and texture similarity," IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020

K. Ding, et al. "Comparison of full-reference image quality models for optimization of image processing systems." International Journal of Computer Vision 129.4 (2021): 1258-1281

https://github.com/dingkeyan93/IQA-optimization


Distortion metrics: a visualization

Original, frame #2

PSNR (↑) 30.18 27.31
SSIM (↑) 0.8816 0.8107

LPIPS (↓) 0.2275 0.3399
DISTS (↓) 0.1458 0.2007

VTM-10.0, QP 47 VTM-10.0, QP 52 FOMM, I-QP 42

24.36
0.8139
0.1637
0.1092

Generative methods do not optimize for sample-level fidelity



Rate reduction in terms of LPIPS & DISTS
LPIPS DISTS

FOMM Face_Vid2Vid CFTE FOMM Face_Vid2Vid CFTE
Seq 01 -36.2% -51.4% -74.3% -41.9% -57.3% -74.2%
Seq 02 -9.4% -43.8% -65.5% -18.0% -56.3% -69.7%
Seq 03 -13.6% -46.3% -64.6% -14.2% -52.5% -68.5%
Seq 04* 0.0% -34.6% 0.0% -2.2% -63.6% -65.1%
Seq 05 -4.8% -47.2% -62.5% -14.1% -57.8% -67.5%
Seq 06 -34.1% -62.9% -71.9% -38.3% -66.9% -73.6%
Seq 07 -43.6% -60.7% -74.1% -59.4% -75.5% -82.8%
Seq 08 -27.4% -56.3% -69.4% -28.3% -58.7% -69.4%
Seq 09 -15.5% -48.0% -67.3% -15.6% -50.1% -67.2%
Seq 10 -19.5% -50.3% -67.5% -19.3% -53.5% -68.2%
Seq 11 -24.1% -58.6% -71.2% -21.0% -63.3% -71.4%
Seq 12 -13.7% -47.7% -64.8% -17.1% -50.8% -66.0%
Seq 13 -18.0% -48.2% -68.5% -16.1% -52.8% -68.7%
Seq 14* 0.0% 0.0% 0.0% -15.9% -65.2% -59.2%
Seq 15 -26.9% -47.6% -65.1% -32.1% -57.4% -69.5%
Seq 16* 20.9% -41.2% 0.0% -12.7% -65.8% -62.5%
Seq 17 -40.6% -58.5% -71.7% -46.1% -64.0% -73.4%
Seq 18 -21.8% -49.1% -68.6% -26.8% -53.1% -70.1%
Seq 19 -11.0% -28.2% -58.7% -12.5% -45.7% -62.2%
Seq 20* 0.0% 0.0% 0.0% 21.6% -57.6% -65.8%

Average -17.0% -44.0% -54.3% -21.5% -58.4% -68.8%
Average* -22.5% -50.3% -67.9% -26.3% -57.2% -70.2%

* Unreliable BD-rate calculation due to non-
overlapped RD curves, removed from 
average* calculation



Rate-distortion performance: overall



VVC

FOMM

Face_Vid2Vid

CFTE
Original

Bit rate 6.64k
LPIPS 0.3627
DISTS 0.2243
PSNR 25.65
SSIM 0.7631 Bit rate 6.18k

LPIPS 0.2135
DISTS 0.1183
PSNR 18.78
SSIM 0.6296

Bit rate 6.56k
LPIPS 0.2358
DISTS 0.1474
PSNR 20.18
SSIM 0.6815

Bit rate 6.29k
LPIPS 0.1907
DISTS 0.0985
PSNR 19.37
SSIM 0.7013



Quality comparison @ similar bit rates: seq 01



original

VVC

FOMM

Face_Vid2Vid

CFTE

Bit rate 5.20k
LPIPS 0.4074
DISTS 0.2618
PSNR 26.94
SSIM 0.7779 Bit rate 5.27k

LPIPS 0.2001
DISTS 0.1198
PSNR 25.76
SSIM 0.7705

Bit rate 5.25k
LPIPS 0.3496
DISTS 0.2425
PSNR 25.51
SSIM 0.7396

Bit rate 5.22k
LPIPS 0.1703
DISTS 0.0959
PSNR 25.75
SSIM 0.7717



Quality comparison @ similar bit rates: seq 06



original

VVC

FOMM

Face_Vid2Vid

CFTE

Bit rate 18.71k
LPIPS 0.1218
DISTS 0.1011
PSNR 30.25
SSIM 0.8846 Bit rate 4.67k

LPIPS 0.1235
DISTS 0.1016
PSNR 21.81
SSIM 0.7560

Bit rate 7.48k
LPIPS 0.1295
DISTS 0.1034
PSNR 22.27
SSIM 0.7692

Bit rate 3.31k
LPIPS 0.1187
DISTS 0.1002
PSNR 20.75
SSIM 0.7590

18% BR 
of VVC



Bit rate comparison @ similar quality: seq 07



original

VVC

FOMM

Face_Vid2Vid

CFTE

Bit rate 11.16k
LPIPS 0.1717
DISTS 0.1070
PSNR 30.68
SSIM 0.9113 Bit rate 3.37k

LPIPS 0.1679
DISTS 0.1034
PSNR 22.71
SSIM 0.8203

Bit rate 5.76k
LPIPS 0.1620
DISTS 0.1034
PSNR 23.89
SSIM 0.8417

Bit rate 2.58k
LPIPS 0.1641
DISTS 0.1055
PSNR 23.13
SSIM 0.8314

23% BR  
of VVC



Bit rate comparison @ similar quality: seq 18



Bit % of compact features/keypoints

1st-frame QP FOMM Face-vid2vid CFTE

What is sent 10 x (2D-KP + 
Jacobian)

15 x (3D-KP) + exp + 
translation 4x4 CFTE map

QP = 52 92% 83% 72%
QP = 42 81% 65% 49%
QP = 32 61% 41% 27%



PART 2: 
THE CHALLENGES



The challenge of larger motion



When there is larger motion

Original

Face_vi2vid

FOMM

CFTE

All generative 
methods suffer 

from objectionable 
motion distortions



Reference 
frame list

Frame 0 Frame 5

Video 
sequence

Frame 0 Frame 1 Frame 2 Frame 3 Frame 4 Frame 5

Dynamic reference refresh

CFTE diff. > 
thres.?

 18,-11, 58, 36，

25,-21, 19,-36,

18,-23, 48,-33,

8,  3, 55,-20

 18,-10, 58, 35，

25,-20, 18,-37,

19,-22, 48,-33,

8,  3, 54,-20

Current frame

Check each 
reference in list

Frame 3
VVC coded



Multi-reference prediction

Current frame

Keymap 
detector

Output

Reference 
frame 0

Reference 
frame 1

Motion estimation module

Keymap 
detector

Keymap 
detector

Prediction 1

Prediction 0

Fusion 
network

Motion estimation module



Rate distortion curves

Dynamic reference can extend CFTE’s operation range towards higher quality



Seq 13 original

Face-vid2vid
BR LPIPS DISTS PSNR SSIM

4.27k 0.2634 0.1362 20.15 0.7276

CFTE
BR LPIPS DISTS PSNR SSIM

4.03k 0.2022 0.1154 22.23 0.7865

Dynamic & multi ref
BR LPIPS DISTS PSNR SSIM

4.41k 0.1783 0.0932 24.91 0.8052

VVC
BR LPIPS DISTS PSNR SSIM

4.44k 0.3868 0.2198 27.72 0.8216

FOMM
BR LPIPS DISTS PSNR SSIM

4.82k 0.2691 0.1625 23.84 0.7933



Seq 19 original

Face-vid2vid
BR LPIPS DISTS PSNR SSIM

5.41k 0.3004 0.1602 16.74 0.6359

CFTE
BR LPIPS DISTS PSNR SSIM

5.17k 0.2487 0.1493 18.85 0.6776

Dynamic & multi ref
BR LPIPS DISTS PSNR SSIM

5.56k 0.1637 0.0967 22.89 0.7241

VVC
BR LPIPS DISTS PSNR SSIM

5.47k 0.3104 0.1988 25.85 0.7915

FOMM
BR LPIPS DISTS PSNR SSIM

5.90k 0.2628 0.1702 20.00 0.6753



Adapting to larger resolutions



Resolution adaption
 Resize to 256x256 for coding (bicubic filters as pre- and post-processing)

 Adaptive CFTE: embedding down-/up-sampling layers within the CFTE workflow 



Objective performance: DISTS
384x384 512x512 640x640

Resize Adaptive Resize Adaptive Resize Adaptive
Seq 01 -72.9% -77.1% -71.3% -79.6% -71.2% -82.0%
Seq 02 -68.9% -73.1% -67.1% -75.5% -68.9% -78.4%
Seq 03 -61.8% -65.1% -58.3% -64.8% -60.6% -69.7%
Seq 04 -51.2% -65.5% -55.9% -70.7% -57.7% -68.8%
Seq 05 -71.0% -75.8% -70.2% -76.1% -70.0% -76.9%
Seq 06 -68.8% -73.9% -66.6% -77.4% -61.8% -76.8%
Seq 07 -80.7% -84.2% -79.7% -85.5% -77.9% -86.1%
Seq 08 -69.0% -74.8% -65.5% -72.7% -61.6% -73.8%
Seq 09* -68.8% -72.9% -67.3% -74.6% -64.8% 0.0%
Seq 10* -69.4% -74.0% -67.9% -73.8% -65.0% 0.0%
Seq 11* -68.3% -74.1% -68.2% 0.0% -68.7% 0.0%
Seq 12* -65.5% -70.7% -61.2% -70.3% -59.6% 0.0%
Seq 13 -67.3% -70.3% -64.3% -72.2% -61.6% -72.6%
Seq 14* 0.0% 0.0% 0.0% -53.6% -56.8% -69.0%
Seq 15 -66.8% -73.4% -64.3% -74.8% -59.3% -75.5%
Seq 16 -56.6% -64.4% -56.2% -66.2% -56.6% -69.4%
Seq 17 -68.7% -74.1% -66.7% -76.6% -65.6% -75.9%
Seq 18 -66.7% -74.2% -62.5% -72.1% -63.7% -73.9%
Seq 19 -60.3% -65.3% -54.7% -61.2% -56.8% -63.4%
Seq 20 -60.4% -66.7% -59.3% -66.4% -60.4% -71.1%

Average -63.2% -68.5% -61.4% -68.2% -63.4% -59.2%
Average* -66.1% -71.9% -64.2% -72.8% -63.6% -74.3%

* Unreliable BD-rate calculation due to non-overlapped RD 
curves, removed from average* calculation



Rate distortion performance: DISTS
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By absorbing scaling 
within the CFTE 

process, adaptive 
CFTE shows robust 
performance for all 

resolutions



VVC Resize Adaptive CFTE
Bit rate 4.37k
DISTS 0.3049
LPIPS 0.5029

Bit rate 4.08k
DISTS 0.1191
LPIPS 0.2467

Bit rate 4.08k
DISTS 0.0967
LPIPS 0.2196

Visual quality @ similar rate: 384x384



VVC Resize Adaptive CFTE
Bit rate 6.85k
DISTS 0.2457
LPIPS 0.3649

Bit rate 6.98k
DISTS 0.1014
LPIPS 0.2462

Bit rate 6.97k
DISTS 0.0899
LPIPS 0.2307

Visual quality @ similar rate: 512x512



VVC Resize Adaptive CFTE
Bit rate 8.43k
DISTS 0.2134
LPIPS 0.3920

Bit rate 8.23k
DISTS 0.1106
LPIPS 0.2615

Bit rate 8.22k
DISTS 0.0956
LPIPS 0.2471

Visual quality @ similar rate: 640x640



Complexity challenge



Computational and model complexity

FOMM Nvidia CFTE

Encoder

Parameter Number 38.9M 68.1M 43.6M

Macs per pixel 14.5G 26.2G 18.7G

Inference speed 28fps 11fps 15fps

Decoder

Parameter Number 82.4M 96.7M 85.8M

Macs per pixel 33.7G 39.2G 36.8G

Inference speed 21fps 8fps 13fps

Inference 256x256 video on Tesla-V100 and 22 core CPU (Intel(R) Xeon(R) Platinum 8163 CPU @ 2.50GHz)



CONCLUDING 
REMARKS



Concluding remarks
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