



# **Generative Face Video Compression: Promises and Challenges**



Alibaba Cloud Intelligence, Alibaba Group

### Yan Ye



### Outline

Introduction

Part 1: the promise

Part 2: the challenge

Concluding remarks











## INTRODUCTION



### **Block-based hybrid video coding**

Input Video







### **Evolution of compression efficiency**



Slide courtesy of B. Bross, "Versatile video coding (VVC) on the final stretch", ITU Workshop on "The future of media," Geneva, Switzerland, 8 October 2019





## Al-based image and video coding

- Enhancing/replacing a coding tool within the hybrid framework
  Intra coding, inter coding, loop filtering, etc.
- End-to-end learning-based image and video compression



D. Minnen, J. Ballé, and G. Toderici. "Joint autoregressive and hierarchical priors for learned image compression." In Advances in Neural Information Processing Systems, pages 10771–10780, 2018. G. Lu, W. Ouyang, D. Xu, X. Zhang, C. Cai, and Z. Gao, "DVC: an end-to-end deep video compression framework," in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11006–11015, 2019.







### Face video compression for video chat







We focus on coding of human face video, where we find much inherent structure and prior knowledge, such as their shape, composition, and movement

### **Model-based video compression**

video telephony:

- a person
- deformation in the temporal domain



P. Eisert, T. Wiegand, and B. Girod, "Model-aided coding: a new approach to incorporate facial animation into motion-compensated video coding," IEEE Transactions on CSVT, vol. 10, no. 3, pp. 344–358, 2000











## **PART 1:** THE PROMISE











## **Related work**

### First order motion model (FOMM)



- Object in the source image is animated according to the motion of driving video

![](_page_10_Picture_6.jpeg)

![](_page_10_Picture_7.jpeg)

Complex motions are represented using a set of keypoints & corresponding affine transformations Generator network combines the source image and the motion derived from the driving video

A. Siarohin, et. al., "First order motion model for image animation," Advances in Neural Information Processing Systems, vol. 32, pp. 7137–7147, 2019.

### Low bandwidth video-chat compression

![](_page_11_Figure_1.jpeg)

- Apply FOMM towards talking-head video compression
- segmentation maps
- Runs real-time on mobile platform

M. Oquab, et. al., "Low bandwidth video-chat compression using deep generative models," in IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshop, 2021.

![](_page_11_Picture_6.jpeg)

![](_page_11_Picture_7.jpeg)

Explore quality and bandwidth trade-offs for static landmarks (i.e., keypoints), dynamic landmarks or

### Free-view neural talking-head synthesis

![](_page_12_Figure_1.jpeg)

- Motion information represented using compact 3D keypoints
- 3D keypoints allows to rotate the head during synthesis

T.C. Wang, et. al., "One-shot free-view neural talking-head synthesis for video conferencing," in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 10039–10049.

![](_page_12_Picture_6.jpeg)

![](_page_12_Picture_7.jpeg)

# Source image containing the target person's appearance and driving video dictates the motion in the output

![](_page_12_Picture_9.jpeg)

![](_page_12_Picture_10.jpeg)

### Going beyond keypoints

Loosely correlated w/ facial features

![](_page_13_Figure_2.jpeg)

We aim to represent motion more efficiently and generate it more reliably

![](_page_13_Picture_4.jpeg)

![](_page_13_Picture_5.jpeg)

![](_page_13_Picture_6.jpeg)

Separately drives motion flow

![](_page_13_Picture_8.jpeg)

### **Compact feature for temporal evolution (CFTE)**

![](_page_14_Picture_1.jpeg)

![](_page_14_Picture_2.jpeg)

![](_page_15_Picture_1.jpeg)

![](_page_15_Picture_2.jpeg)

![](_page_15_Picture_3.jpeg)

### **CFTE encoder**

![](_page_16_Figure_1.jpeg)

![](_page_16_Picture_2.jpeg)

![](_page_16_Picture_3.jpeg)

### **CFTE decoder**

Feature extraction

$$F_{comp} = g_{(Conv,GD)}$$

**Sparse motion** 

$$M_{sparse} = GF_{flow} (\tilde{F}_{comp}^{K}, \tilde{F}_{comp}^{I})$$
   
  $F_{cdf}$  deformed frame

**Dense motion &** occlusion

 $M_{dense} = P_1(f_{U-Net}(co))$  $M_{occlusion} = P_2(f_{U-Net})$ 

> $Diff_{< I,K>} =$ where

Video frame generation

$$\hat{I} = M_{occlusion} \odot f_{U-Net}(K, M_{dense})$$

![](_page_17_Picture_10.jpeg)

![](_page_17_Picture_11.jpeg)

### **CFTE work flow**

### $(f_{U-Net}(\phi(X,s)))$

$$Dist(F_{cdf}, Diff_{< I,K>})))$$

$$[concat(F_{cdf}, Diff_{< I,K>})))$$

$$= \varphi(\tilde{F}_{comp}^{I}) - \varphi(\tilde{F}_{comp}^{K})$$

## **Training loss**

### **Perceptual loss**

![](_page_18_Figure_2.jpeg)

 $L_G(\hat{I}) = -$ 

**Adversarial loss** 

 $L_D(\hat{I}, I) = \sum_{i=1}^k E_{\hat{I} \sim I}$ 

**Total loss** 

 $L_{total} = \lambda_{intial} \cdot L_{per-initial} + \lambda_{final} \cdot L_{per-final} + \lambda_{adv} \cdot (L_G + L_D)$ 

![](_page_18_Picture_8.jpeg)

![](_page_18_Picture_9.jpeg)

$$\frac{1}{KH_i \times W_i} \| VGG_i(F_{cdf}) - VGG_i(\phi(I)) \|$$
$$\frac{1}{KI_i \times H_i \times W_i} \| VGG_i(\hat{I}) - VGG_i(I) \|$$

$$-\sum_{i=1}^{k} E_{\hat{I} \sim P_g}(D_i(\hat{I}))$$
$$\sim_{P_g} \left( D_i(\hat{I}) \right) - \sum_{i=1}^{k} E_{\hat{I} \sim P_r}(D_i(I))$$

### **CFTE decoding flow visualization**

![](_page_19_Picture_1.jpeg)

Key frame

Current frame CFTE map

Coarse deformed frame

![](_page_19_Picture_6.jpeg)

![](_page_19_Picture_7.jpeg)

Dense Occlu motion map

Occlusion map

Final output

### **CFTE entropy coding**

#### **CFTE** map residual

|  | <br> |  |
|--|------|--|
|  |      |  |
|  |      |  |
|  |      |  |

| 18, | _ |
|-----|---|
| 25, |   |
| 18, |   |
| 8,  |   |

First-order Exp-Golomb binarization

![](_page_20_Picture_7.jpeg)

![](_page_20_Picture_8.jpeg)

![](_page_20_Picture_9.jpeg)

![](_page_20_Picture_10.jpeg)

### Current CFTE map

- -11, 58, 36, -21, 19, -36, -23, 48, -33,
- 3, 55, -20

![](_page_20_Figure_14.jpeg)

### **Previous CFTE map**

| 18, -10, | 58, | 35,  |
|----------|-----|------|
| 25, -20, | 18, | -37, |
| 19, -22, | 48, | -33, |
| 8, 3,    | 54, | -20  |

![](_page_21_Picture_1.jpeg)

![](_page_21_Picture_2.jpeg)

## **Experimental results**

### **Experimental settings**

#### **VVC** anchor

- VTM-10.0, LDB configuration
- QPs {37, 42, 47, 52}

![](_page_22_Picture_4.jpeg)

![](_page_22_Picture_5.jpeg)

### **Generative methods**

- First frame coded by VTM-10.0, QPs {37, 42, 47, 52}
- FOMM based on <u>https://github.com/AliaksandrSiarohin/first-order-model</u>
- Face\_vid2vid from https://github.com/zhanglonghao1992/One-Shot\_Free-View Neural Talking Head Synthesis
- Entropy coding of FOMM and Face\_vid2vid keypoints are aligned with that of CFTE

### **Test sequences**

Resolution: 256x256 Frame rate: 25 fps Duration: 10 sec

![](_page_23_Picture_4.jpeg)

![](_page_23_Picture_5.jpeg)

![](_page_23_Picture_6.jpeg)

### Cropped from open source database: https://ibug.doc.ic.ac.uk/resources/300-VW/ in RGB format

### **Distortion metrics**

- Conventional metrics: PSNR, SSIM
- Learning-based distortion metrics:
- LPIPS: Learned Perceptual Image Patch Similarity • DISTS: Deep Image Structure and Texture Similarity All metrics calculated with the open-source implementation from https://github.com/dingkeyan93/IQA-optimization

R. Zhang, et al. "The unreasonable effectiveness of deep features as a perceptual metric." Proceedings of the IEEE conference on computer vision and pattern recognition. 2018. K. Ding, et. al., "Image quality assessment: Unifying structure and texture similarity," IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020 K. Ding, et al. "Comparison of full-reference image quality models for optimization of image processing systems." International Journal of Computer Vision 129.4 (2021): 1258-1281

![](_page_24_Picture_7.jpeg)

![](_page_24_Picture_8.jpeg)

### **Distortion metrics: a visualization**

![](_page_25_Picture_1.jpeg)

![](_page_25_Picture_2.jpeg)

| Original, frame #2 | VTM-10.0, QP 47 | VTM-10.0, QP 52 | FOMM, I-QP 42 |
|--------------------|-----------------|-----------------|---------------|
| PSNR (↑)           | 30.18           | 27.31           | 24.3          |
| SSIM (↑)           | 0.8816          | 0.8107          | 0.813         |
| LPIPS (↓)          | 0.2275          | 0.3399          | 0.163         |
| DISTS (↓)          | 0.1458          | 0.2007          | 0.109         |
|                    |                 |                 |               |

### Generative methods do not optimize for sample-level fidelity

![](_page_25_Picture_5.jpeg)

![](_page_25_Picture_6.jpeg)

![](_page_25_Picture_7.jpeg)

![](_page_25_Picture_8.jpeg)

### **Rate reduction in terms of LPIPS & DISTS**

|          | LPIPS  |              | DISTS  |        |              |        |
|----------|--------|--------------|--------|--------|--------------|--------|
|          | FOMM   | Face_Vid2Vid | CFTE   | FOMM   | Face_Vid2Vid | CFTE   |
| Seq 01   | -36.2% | -51.4%       | -74.3% | -41.9% | -57.3%       | -74.2% |
| Seq 02   | -9.4%  | -43.8%       | -65.5% | -18.0% | -56.3%       | -69.7% |
| Seq 03   | -13.6% | -46.3%       | -64.6% | -14.2% | -52.5%       | -68.5% |
| Seq 04*  | 0.0%   | -34.6%       | 0.0%   | -2.2%  | -63.6%       | -65.1% |
| Seq 05   | -4.8%  | -47.2%       | -62.5% | -14.1% | -57.8%       | -67.5% |
| Seq 06   | -34.1% | -62.9%       | -71.9% | -38.3% | -66.9%       | -73.6% |
| Seq 07   | -43.6% | -60.7%       | -74.1% | -59.4% | -75.5%       | -82.8% |
| Seq 08   | -27.4% | -56.3%       | -69.4% | -28.3% | -58.7%       | -69.4% |
| Seq 09   | -15.5% | -48.0%       | -67.3% | -15.6% | -50.1%       | -67.2% |
| Seq 10   | -19.5% | -50.3%       | -67.5% | -19.3% | -53.5%       | -68.2% |
| Seq 11   | -24.1% | -58.6%       | -71.2% | -21.0% | -63.3%       | -71.4% |
| Seq 12   | -13.7% | -47.7%       | -64.8% | -17.1% | -50.8%       | -66.0% |
| Seq 13   | -18.0% | -48.2%       | -68.5% | -16.1% | -52.8%       | -68.7% |
| Seq 14*  | 0.0%   | 0.0%         | 0.0%   | -15.9% | -65.2%       | -59.2% |
| Seq 15   | -26.9% | -47.6%       | -65.1% | -32.1% | -57.4%       | -69.5% |
| Seq 16*  | 20.9%  | -41.2%       | 0.0%   | -12.7% | -65.8%       | -62.5% |
| Seq 17   | -40.6% | -58.5%       | -71.7% | -46.1% | -64.0%       | -73.4% |
| Seq 18   | -21.8% | -49.1%       | -68.6% | -26.8% | -53.1%       | -70.1% |
| Seq 19   | -11.0% | -28.2%       | -58.7% | -12.5% | -45.7%       | -62.2% |
| Seq 20*  | 0.0%   | 0.0%         | 0.0%   | 21.6%  | -57.6%       | -65.8% |
| Average  | -17.0% | -44.0%       | -54.3% | -21.5% | -58.4%       | -68.8% |
| Average* | -22.5% | -50.3%       | -67.9% | -26.3% | -57.2%       | -70.2% |

![](_page_26_Picture_2.jpeg)

![](_page_26_Picture_3.jpeg)

![](_page_26_Figure_4.jpeg)

\* Unreliable BD-rate calculation due to nonoverlapped RD curves, removed from average\* calculation

![](_page_26_Figure_6.jpeg)

### **Rate-distortion performance: overall**

![](_page_27_Figure_1.jpeg)

![](_page_27_Picture_2.jpeg)

![](_page_27_Picture_3.jpeg)

![](_page_27_Figure_4.jpeg)

| VVC      |        |  |  |
|----------|--------|--|--|
| Bit rate | 6.64k  |  |  |
| LPIPS    | 0.3627 |  |  |
| DISTS    | 0.2243 |  |  |
| PSNR     | 25.65  |  |  |
| SSIM     | 0.7631 |  |  |

![](_page_28_Picture_1.jpeg)

#### Original FOMM

| Bit rate | 6.56k  |
|----------|--------|
| LPIPS    | 0.2358 |
| DISTS    | 0.1474 |
| PSNR     | 20.18  |
| SSIM     | 0.6815 |

![](_page_28_Picture_4.jpeg)

![](_page_28_Picture_5.jpeg)

![](_page_28_Picture_6.jpeg)

![](_page_28_Picture_7.jpeg)

![](_page_28_Picture_8.jpeg)

#### Face\_Vid2Vid

| Bit rate | 6.18k  |
|----------|--------|
| LPIPS    | 0.2135 |
| DISTS    | 0.1183 |
| PSNR     | 18.78  |
| SSIM     | 0.6296 |

![](_page_28_Picture_11.jpeg)

#### CFTE

| Bit rate | 6.29k  |
|----------|--------|
| LPIPS    | 0.1907 |
| DISTS    | 0.0985 |
| PSNR     | 19.37  |
| SSIM     | 0.7013 |

### Quality comparison @ similar bit rates: seq 01

![](_page_29_Figure_1.jpeg)

![](_page_29_Picture_2.jpeg)

![](_page_29_Picture_3.jpeg)

![](_page_29_Figure_4.jpeg)

![](_page_30_Picture_0.jpeg)

![](_page_30_Picture_1.jpeg)

VVC

| Bit rate | 5.20k  |
|----------|--------|
| LPIPS    | 0.4074 |
| DISTS    | 0.2618 |
| PSNR     | 26.94  |
| SSIM     | 0.7779 |

![](_page_30_Picture_4.jpeg)

#### original FOMM

| Bit rate | 5.25k  |
|----------|--------|
| LPIPS    | 0.3496 |
| DISTS    | 0.2425 |
| PSNR     | 25.51  |
| SSIM     | 0.7396 |

![](_page_30_Picture_7.jpeg)

![](_page_30_Picture_8.jpeg)

![](_page_30_Picture_9.jpeg)

#### Face\_Vid2Vid

| Bit rate | 5.27k  |
|----------|--------|
| LPIPS    | 0.2001 |
| DISTS    | 0.1198 |
| PSNR     | 25.76  |
| SSIM     | 0.7705 |

![](_page_30_Picture_12.jpeg)

#### CFTE

| Bit rate | 5.22k  |
|----------|--------|
| LPIPS    | 0.1703 |
| DISTS    | 0.0959 |
| PSNR     | 25.75  |
| SSIM     | 0.7717 |

### Quality comparison @ similar bit rates: seq 06

![](_page_31_Figure_1.jpeg)

![](_page_31_Picture_2.jpeg)

![](_page_31_Picture_3.jpeg)

![](_page_31_Figure_4.jpeg)

20

![](_page_31_Picture_6.jpeg)

#### VVC

| Bit rate | 18.71k |
|----------|--------|
| LPIPS    | 0.1218 |
| DISTS    | 0.1011 |
| PSNR     | 30.25  |
| SSIM     | 0.8846 |

![](_page_32_Picture_2.jpeg)

### original FOMM

| Bit rate | 7.48k  |
|----------|--------|
| LPIPS    | 0.1295 |
| DISTS    | 0.1034 |
| PSNR     | 22.27  |
| SSIM     | 0.7692 |

![](_page_32_Picture_5.jpeg)

![](_page_32_Picture_6.jpeg)

![](_page_32_Picture_7.jpeg)

![](_page_32_Picture_8.jpeg)

#### Face\_Vid2Vid

| Bit rate | 4.67k  |
|----------|--------|
| LPIPS    | 0.1235 |
| DISTS    | 0.1016 |
| PSNR     | 21.81  |
| SSIM     | 0.7560 |

![](_page_32_Picture_11.jpeg)

| CF1      | 18% E<br>of VV |
|----------|----------------|
| Bit rate | 3.31k          |
| LPIPS    | 0.1187         |
| DISTS    | 0.1002         |
| PSNR     | 20.75          |
| SSIM     | 0.7590         |

![](_page_32_Picture_13.jpeg)

### Bit rate comparison @ similar quality: seq 07

![](_page_33_Figure_1.jpeg)

![](_page_33_Picture_2.jpeg)

![](_page_33_Picture_3.jpeg)

![](_page_33_Figure_4.jpeg)

25

![](_page_34_Picture_0.jpeg)

![](_page_34_Picture_1.jpeg)

#### VVC

| Bit rate | 11.16k |
|----------|--------|
| LPIPS    | 0.1717 |
| DISTS    | 0.1070 |
| PSNR     | 30.68  |
| SSIM     | 0.9113 |

![](_page_34_Picture_4.jpeg)

#### original FOMM

| Bit rate | 5.76k  |
|----------|--------|
| LPIPS    | 0.1620 |
| DISTS    | 0.1034 |
| PSNR     | 23.89  |
| SSIM     | 0.8417 |

![](_page_34_Picture_7.jpeg)

![](_page_34_Picture_8.jpeg)

#### Face\_Vid2Vid

| Bit rate | 3.37k  |
|----------|--------|
| LPIPS    | 0.1679 |
| DISTS    | 0.1034 |
| PSNR     | 22.71  |
| SSIM     | 0.8203 |

![](_page_34_Picture_11.jpeg)

| CFT      | 23% E<br>of VV |
|----------|----------------|
| Bit rate | 2.58k          |
| LPIPS    | 0.1641         |
| DISTS    | 0.1055         |
| PSNR     | 23.13          |
| SSIM     | 0.8314         |

![](_page_34_Picture_13.jpeg)

### Bit rate comparison @ similar quality: seq 18

![](_page_35_Figure_1.jpeg)

![](_page_35_Picture_2.jpeg)

![](_page_35_Picture_3.jpeg)

![](_page_35_Figure_4.jpeg)

| 1st-frame QP   | FOMM                       |
|----------------|----------------------------|
| What is sent   | 10 x (2D-KP +<br>Jacobian) |
| <b>QP = 52</b> | 92%                        |
| <b>QP = 42</b> | 81%                        |
| <b>QP</b> = 32 | 61%                        |

![](_page_36_Picture_2.jpeg)

![](_page_36_Picture_3.jpeg)

![](_page_36_Picture_4.jpeg)

| Face-vid2vid                        | CFTE         |
|-------------------------------------|--------------|
| 15 x (3D-KP) + exp +<br>translation | 4x4 CFTE map |
| 83%                                 | 72%          |
| 65%                                 | 49%          |
| 41%                                 | 27%          |

![](_page_37_Picture_0.jpeg)

![](_page_37_Picture_1.jpeg)

![](_page_37_Picture_2.jpeg)

## PART 2: THE CHALLENGES

![](_page_37_Picture_4.jpeg)

### The challenge of larger motion

![](_page_38_Picture_1.jpeg)

![](_page_38_Picture_2.jpeg)

### When there is larger motion

![](_page_39_Picture_1.jpeg)

#### Original

#### Face\_vi2vid

![](_page_39_Picture_4.jpeg)

![](_page_39_Picture_5.jpeg)

![](_page_39_Picture_6.jpeg)

![](_page_39_Picture_7.jpeg)

FOMM

All generative methods suffer from objectionable motion distortions

![](_page_39_Picture_10.jpeg)

CFTE

### Dynamic reference refresh

![](_page_40_Picture_1.jpeg)

8, 3, 55, -20

#### Reference frame list

Video sequence

![](_page_40_Picture_4.jpeg)

![](_page_40_Picture_5.jpeg)

![](_page_40_Picture_6.jpeg)

Frame 5

![](_page_40_Picture_8.jpeg)

Frame 3

![](_page_40_Figure_10.jpeg)

![](_page_40_Picture_11.jpeg)

Frame 4

![](_page_40_Picture_13.jpeg)

Frame 5

![](_page_40_Picture_15.jpeg)

Check each

reference in list

Current frame

### **Multi-reference prediction**

![](_page_41_Figure_1.jpeg)

![](_page_41_Picture_2.jpeg)

![](_page_41_Picture_3.jpeg)

### **Rate distortion curves**

![](_page_42_Figure_1.jpeg)

Dynamic reference can extend CFTE's operation range towards higher quality

![](_page_42_Picture_3.jpeg)

![](_page_42_Picture_4.jpeg)

![](_page_42_Figure_5.jpeg)

![](_page_43_Picture_0.jpeg)

Seq 13 original

![](_page_43_Picture_2.jpeg)

|       | '      | VVC    |
|-------|--------|--------|
| BR    | LPIPS  | DISTS  |
| 4.44k | 0.3868 | 0.2198 |

![](_page_43_Picture_4.jpeg)

| Face-vid2vid |        |        |       |        |  |  |
|--------------|--------|--------|-------|--------|--|--|
| BR           | LPIPS  | DISTS  | PSNR  | SSIM   |  |  |
| 4.27k        | 0.2634 | 0.1362 | 20.15 | 0.7276 |  |  |

![](_page_43_Picture_6.jpeg)

PSNR

PSNR

SSIM

22.23 0.7865

27.72 0.8216

SSIM

|       | C      | FTE    |
|-------|--------|--------|
| BR    | LPIPS  | DISTS  |
| 4.03k | 0.2022 | 0.1154 |

![](_page_43_Picture_8.jpeg)

### FOMM

| BR    | LPIPS  | DISTS  | PSNR  | SSIM   |
|-------|--------|--------|-------|--------|
| 4.82k | 0.2691 | 0.1625 | 23.84 | 0.7933 |

![](_page_43_Picture_11.jpeg)

#### Dynamic & multi ref

| BR    | LPIPS  | DISTS  | PSNR  | SSIM   |
|-------|--------|--------|-------|--------|
| 4.41k | 0.1783 | 0.0932 | 24.91 | 0.8052 |

![](_page_43_Picture_14.jpeg)

![](_page_43_Picture_15.jpeg)

![](_page_44_Picture_0.jpeg)

Seq 19 original

![](_page_44_Picture_2.jpeg)

| VVC   |        |        |       |        |  |
|-------|--------|--------|-------|--------|--|
| BR    | LPIPS  | DISTS  | PSNR  | SSIM   |  |
| 5.47k | 0.3104 | 0.1988 | 25.85 | 0.7915 |  |

![](_page_44_Picture_4.jpeg)

### Face-vid2vid

| BR    | LPIPS  | DISTS  | PSNR  | SSIM   |
|-------|--------|--------|-------|--------|
| 5.41k | 0.3004 | 0.1602 | 16.74 | 0.6359 |

![](_page_44_Picture_7.jpeg)

| CFTE  |        |        |       |        |  |
|-------|--------|--------|-------|--------|--|
| BR    | LPIPS  | DISTS  | PSNR  | SSIM   |  |
| 5.17k | 0.2487 | 0.1493 | 18.85 | 0.6776 |  |

![](_page_44_Picture_9.jpeg)

![](_page_44_Picture_10.jpeg)

| BR    | LPIPS  | DISTS  | PSNR  | SSIM   |
|-------|--------|--------|-------|--------|
| 5.90k | 0.2628 | 0.1702 | 20.00 | 0.6753 |

![](_page_44_Picture_12.jpeg)

#### Dynamic & multi ref

| BR    | LPIPS  | DISTS  | PSNR  | SSIM   |
|-------|--------|--------|-------|--------|
| 5.56k | 0.1637 | 0.0967 | 22.89 | 0.7241 |

![](_page_44_Picture_15.jpeg)

![](_page_44_Picture_16.jpeg)

## Adapting to larger resolutions

![](_page_45_Picture_1.jpeg)

![](_page_45_Picture_2.jpeg)

### **Resolution adaption**

### Resize to 256x256 for coding (bicubic filters as pre- and post-processing)

![](_page_46_Picture_2.jpeg)

Input width×height

### Adaptive CFTE: embedding down-/up-sampling layers within the CFTE workflow

![](_page_46_Figure_5.jpeg)

![](_page_46_Picture_6.jpeg)

![](_page_46_Picture_7.jpeg)

![](_page_46_Picture_8.jpeg)

upsample

256×256

![](_page_46_Picture_11.jpeg)

Output width×height

### **Objective performance: DISTS**

|          | 384x384 |          | 512    | x512     | 640    | 640x640  |  |
|----------|---------|----------|--------|----------|--------|----------|--|
|          | Resize  | Adaptive | Resize | Adaptive | Resize | Adaptive |  |
| Seq 01   | -72.9%  | -77.1%   | -71.3% | -79.6%   | -71.2% | -82.0%   |  |
| Seq 02   | -68.9%  | -73.1%   | -67.1% | -75.5%   | -68.9% | -78.4%   |  |
| Seq 03   | -61.8%  | -65.1%   | -58.3% | -64.8%   | -60.6% | -69.7%   |  |
| Seq 04   | -51.2%  | -65.5%   | -55.9% | -70.7%   | -57.7% | -68.8%   |  |
| Seq 05   | -71.0%  | -75.8%   | -70.2% | -76.1%   | -70.0% | -76.9%   |  |
| Seq 06   | -68.8%  | -73.9%   | -66.6% | -77.4%   | -61.8% | -76.8%   |  |
| Seq 07   | -80.7%  | -84.2%   | -79.7% | -85.5%   | -77.9% | -86.1%   |  |
| Seq 08   | -69.0%  | -74.8%   | -65.5% | -72.7%   | -61.6% | -73.8%   |  |
| Seq 09*  | -68.8%  | -72.9%   | -67.3% | -74.6%   | -64.8% | 0.0%     |  |
| Seq 10*  | -69.4%  | -74.0%   | -67.9% | -73.8%   | -65.0% | 0.0%     |  |
| Seq 11*  | -68.3%  | -74.1%   | -68.2% | 0.0%     | -68.7% | 0.0%     |  |
| Seq 12*  | -65.5%  | -70.7%   | -61.2% | -70.3%   | -59.6% | 0.0%     |  |
| Seq 13   | -67.3%  | -70.3%   | -64.3% | -72.2%   | -61.6% | -72.6%   |  |
| Seq 14*  | 0.0%    | 0.0%     | 0.0%   | -53.6%   | -56.8% | -69.0%   |  |
| Seq 15   | -66.8%  | -73.4%   | -64.3% | -74.8%   | -59.3% | -75.5%   |  |
| Seq 16   | -56.6%  | -64.4%   | -56.2% | -66.2%   | -56.6% | -69.4%   |  |
| Seq 17   | -68.7%  | -74.1%   | -66.7% | -76.6%   | -65.6% | -75.9%   |  |
| Seq 18   | -66.7%  | -74.2%   | -62.5% | -72.1%   | -63.7% | -73.9%   |  |
| Seq 19   | -60.3%  | -65.3%   | -54.7% | -61.2%   | -56.8% | -63.4%   |  |
| Seq 20   | -60.4%  | -66.7%   | -59.3% | -66.4%   | -60.4% | -71.1%   |  |
| Average  | -63.2%  | -68.5%   | -61.4% | -68.2%   | -63.4% | -59.2%   |  |
| Average* | -66.1%  | -71.9%   | -64.2% | -72.8%   | -63.6% | -74.3%   |  |

![](_page_47_Picture_2.jpeg)

![](_page_47_Picture_3.jpeg)

![](_page_47_Figure_4.jpeg)

\* Unreliable BD-rate calculation due to non-overlapped RD curves, removed from average\* calculation

### Rate distortion performance: DISTS

![](_page_48_Figure_1.jpeg)

![](_page_48_Picture_2.jpeg)

![](_page_48_Picture_3.jpeg)

By absorbing scaling within the CFTE process, adaptive CFTE shows robust performance for all resolutions

![](_page_48_Picture_5.jpeg)

## Visual quality @ similar rate: 384x384

![](_page_49_Picture_1.jpeg)

#### VVC

| 4.37k  |
|--------|
| 0.3049 |
| 0.5029 |
|        |

#### Resize

| Bit rate | 4.08  |
|----------|-------|
| DISTS    | 0.119 |
| LPIPS    | 0.246 |

![](_page_49_Picture_6.jpeg)

![](_page_49_Picture_7.jpeg)

![](_page_49_Picture_8.jpeg)

#### **Adaptive CFTE**

| Bit rate | 4.08k  |
|----------|--------|
| DISTS    | 0.0967 |
| LPIPS    | 0.2196 |

### Visual quality @ similar rate: 512x512

![](_page_50_Picture_1.jpeg)

#### VVC

| Bit rate | 6.85k  |
|----------|--------|
| DISTS    | 0.2457 |
| LPIPS    | 0.3649 |

![](_page_50_Picture_4.jpeg)

![](_page_50_Picture_5.jpeg)

![](_page_50_Picture_6.jpeg)

![](_page_50_Picture_7.jpeg)

#### Resize

| Bit rate | 6.98k  |
|----------|--------|
| DISTS    | 0.1014 |
| LPIPS    | 0.2462 |

#### **Adaptive CFTE**

| Bit rate | 6.97k  |
|----------|--------|
| DISTS    | 0.0899 |
| LPIPS    | 0.2307 |

![](_page_51_Picture_1.jpeg)

#### VVC

| Bit rate | 8.43k  |
|----------|--------|
| DISTS    | 0.2134 |
| LPIPS    | 0.3920 |

![](_page_51_Picture_4.jpeg)

![](_page_51_Picture_5.jpeg)

#### Resize

| Bit rate | 8.23k  |
|----------|--------|
| DISTS    | 0.1106 |
| LPIPS    | 0.2615 |

#### **Adaptive CFTE**

| 8.22k  | Bit rate |
|--------|----------|
| 0.0956 | DISTS    |
| 0.2471 | LPIPS    |

![](_page_51_Picture_10.jpeg)

## **Complexity challenge**

![](_page_52_Picture_1.jpeg)

![](_page_52_Picture_2.jpeg)

### **Computational and model complexity**

|         |                  | FOMM  | Nvidia | CFTE  |
|---------|------------------|-------|--------|-------|
| Encoder | Parameter Number | 38.9M | 68.1M  | 43.6M |
|         | Macs per pixel   | 14.5G | 26.2G  | 18.7G |
|         | Inference speed  | 28fps | 11fps  | 15fps |
| Decoder | Parameter Number | 82.4M | 96.7M  | 85.8M |
|         | Macs per pixel   | 33.7G | 39.2G  | 36.8G |
|         | Inference speed  | 21fps | 8fps   | 13fps |

Inference 256x256 video on Tesla-V100 and 22 core CPU (Intel(R) Xeon(R) Platinum 8163 CPU @ 2.50GHz)

![](_page_53_Picture_3.jpeg)

![](_page_53_Picture_4.jpeg)

![](_page_54_Picture_0.jpeg)

![](_page_54_Picture_1.jpeg)

![](_page_54_Picture_2.jpeg)

## CONCLUDING REMARKS

![](_page_54_Picture_4.jpeg)

### **Concluding remarks**

![](_page_55_Figure_1.jpeg)

But it also faces many challenges

So does Al-based video compression

![](_page_55_Picture_10.jpeg)

![](_page_55_Picture_11.jpeg)

• Preserve clearer facial features @ ultra-low bit rate ranges Significant BD rate reduction over VVC • Face composition in 3D space

 Avoidance of objectionable distortions • Higher quality reconstruction, esp. expression, local motion, etc • Complexity reduction esp. @ decoder side

 Expanding beyond head-and-shoulder scenario General-purpose high performance video compression using Al-based methodology • Quality metrics beyond PSNR and SSIM, e.g. Al-based

### Acknowledgment

### I'd like to thank my wonderful collaborators:

Dr. Zhao Wang, Alibaba Group Bolin Chen, Ph.D. student, City University of Hong Kong **Binzhe Li**, Ph.D. student, City University of Hong Kong

![](_page_56_Picture_4.jpeg)

![](_page_56_Picture_5.jpeg)

- **Dr. Shiqi Wang**, Assistant Prof., City University of Hong Kong

  - I have learned a lot working with you all!

### References

- 1. Versatile Video Coding (VVC)," Proceedings of the IEEE, 2021.
- 2. 31.10 (2021): 3736-3764.
- 3.
- 4.
- Processing Systems, pages 10771–10780, 2018. 5.
- 6. Conference on Computer Vision and Pattern Recognition, pp. 11006–11015, 2019.
- 7. and machine intelligence, 2020.
- 8. Transactions on Circuits and Systems for Video Technology, vol. 10, no. 3, pp. 344–358, 2000.
- 9. 7147.
- 10. ceedings of the IEEE Data Compression Conference, 2022.
- 11. Computer Vision and Pattern Recognition. 2021.
- 12. pattern recognition. 2018.
- 13.
- 14. Vision 129.4 (2021): 1258-1281
- Video database: https://ibug.doc.ic.ac.uk/resources/300-VW/ 15.

![](_page_57_Picture_16.jpeg)

![](_page_57_Picture_17.jpeg)

B. Bross, J. Chen, J.-R. Ohm, G. J. Sullivan, and Y.-K. Wang, "Developments in international video coding standardization after AVC, with an overview of

B. Bross, et al. "Overview of the versatile video coding (VVC) standard and its applications." IEEE Transactions on Circuits and Systems for Video Technology

J. Ballé, V. Laparra, and E. P. Simoncelli. "End-to-end optimized image compression." In International Conference on Learning Representations (ICLR), 2017. D. Minnen, J. Ballé, and G. Toderici. "Joint autoregressive and hierarchical priors for learned image compression." In Advances in Neural Information

G. Lu, W. Ouyang, D. Xu, X. Zhang, C. Cai, and Z. Gao, "DVC: an end-to-end deep video compression framework," in Proceedings of the IEEE/CVF

G. Lu, X. Zhang, W. Ouyang, L. Chen, Z. Gao, and D. Xu, "An end-to-end learning framework for video compression," IEEE transactions on pattern analysis

P. Eisert, T. Wiegand, and B. Girod, "Model-aided coding: a new approach to incorporate facial animation into motion-compensated video coding," IEEE

A Siarohin, S Lathuilière, S Tulyakov, "First order motion model for image animation." Advances in Neural Information Pro-cessing Systems 32 (2019): 7137-

B. Chen, et al. "Beyond Keypoint Coding: Temporal Evolution Inference with Compact Feature Representation for Talking Face Video Compression." Pro-

T.-C. Wang, A. Mallya, and M.-Y. Liu. "One-shot free-view neural talking-head synthesis for video conferencing." Proceedings of the IEEE/CVF Conference on

R. Zhang, et al. "The unreasonable effectiveness of deep features as a perceptual metric." Proceedings of the IEEE conference on computer vision and

K. Ding, et. al., "Image quality assessment: Unifying structure and texture similarity," IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020 K. Ding, et al. "Comparison of full-reference image quality models for optimization of image processing systems." International Journal of Computer

![](_page_58_Picture_0.jpeg)

![](_page_58_Picture_1.jpeg)

![](_page_58_Picture_2.jpeg)